
Recurrent Neural Network Based Gating
for Natural Gas Load Prediction System

Petr Musilek, Member, IEEE, Emil Pelikán, Tomáš Brabec and Milan Šimůnek

Abstract— Prediction of natural gas consumption is an im-
portant element in gas load management aimed to better
utilize the facilities of a gas distribution system. The major
challenges faced by developers of prediction systems are the
variety and volatility of consumer profiles, strong seasonal
dependency and dependency on climatic conditions, and lack of
extensive and reliable historical data. In this paper, the problem
of seasonal dependency is tackled with a recurrent neural
network used as a gate for a statistical mixture model. Historical
consumption data along with climatic conditions and other
auxiliary descriptors are combined with expert delineation
of heating season boundaries to provide training data. The
resulting gating system is capable of reliable identification of
the start and end of the heating season and, combined with the
statistical models, of accurate predictions of gas load.

I. INTRODUCTION

There is a strong economical aspect of natural gas con-
sumption forecasting. Accurate prediction of natural gas
consumption can significantly contribute to improvement
of gas load management. Subsequently, facilities of a gas
distribution system can be better utilized and gas purchases
managed, leading to significant savings. Compared to human
experts, quality of load predictions can be improved using
automated forecasting systems, usually based on statistics
and/or computational intelligence (CI). In addition to the di-
rect use of the load predictions, they can also be used as sup-
port tools aiding experts (analysts, economists, dispatchers)
in their decisions. Another advantage of CI based forecasting
systems is their ability to learn from past experience and to
adapt to changing distribution environment, both without the
need of their explicit description.

The major challenges faced by the developers of prediction
systems are the variety and volatility of consumer pro-
files, and strong seasonal and climatic dependence of actual
consumption. These difficulties usually limit the maximum
accuracy possible to achieve by a single-model forecasting
system. To overcome this limitation, multiple models can be
combined into so called mixture models based on a divide-
and-conquer approach to solving complex problems. Mixture
models are used when it is either not possible or too difficult
to solve a problem at once. They use several solution modules

Petr Musilek is with the Department of Electrical and Computer Engineer-
ing, University of Alberta, Edmonton, AB T6G 2V4, Canada (phone: 780-
492-5368; fax: 780-492-1811; email: musilek@ece.ualberta.ca). Currently,
he is a visiting scientist with the Institute of Computer Science, Academy
of Sciences of the Czech Republic, Pod vodárenskou věžı́ 2, 182 07 Prague
8, Czech Republic.

Emil Pelikán, Tomáš Brabec and Milan Šimůnek are with the Institute
of Computer Science, Academy of Sciences of the Czech Republic, Pod
vodárenskou věžı́ 2, 182 07 Prague 8, Czech Republic. (email: emil,
bendoch, simunek@cs.cas.cz).

that deal with simpler problems and a gating module for
deciding which of the solution modules is responsible for a
certain part of the problem.

In this paper, divide-and-conquer approach is applied to
the problem of gas load forecasting. The approach is used to
extend the forecasting system ELVIRA, a modular system de-
veloped and used for utility load predictions in various time
horizons [8]. The current system provides various statistical
and CI methods that can be used to build a single global
prediction model for given forecasting task. To improve
accuracy of the system, it is proposed to build several local
models and a gating system responsible for applying a local
model appropriate to actual situation. The proposed gating
system is build using a recurrent neural network. Historical
consumption information along with climatic data and other
descriptors are combined with expert delineation of heating
season boundaries to obtain training data. The resulting
gating module is capable of reliable identification of start
and end of heating season and, combined with the prediction
models provided by ELVIRA, of more accurate predictions
of gas load.

The paper is organized as follows. Section II introduces the
prediction system ELVIRA, and provides a brief overview of
mixture models and recurrent neural networks. The gating
module itself is described in Section III, while the results
of experiments using this module for load prediction are
presented and analyzed in Section IV. Finally, Section V
brings main conclusions and provides possible directions of
future research.

II. BACKGROUND

A. The Forecasting System

The presented gating module extends the commercial fore-
casting system ELVIRA [8]. This module can be, however,
used with other prediction modules and/or systems. For
this reason, the following description is limited to general
characteristics of the system and properties of the prediction
method employed for short-term (1–day) forecasts of gas
consumption, used as an illustrative example in this paper.

ELVIRA is a complex modular system providing predic-
tion and decision-support information to utility production
and distribution companies. Within the system, there are
various prediction methods available for deployment, such
as:
• Box-Jenkins models
• Case-based reasoning (CBR) models
• Rule-based systems



• Artificial neural networks
• Decomposition time series
Depending on particular tasks and available data, the sys-

tem recommends the most appropriate method and performs
forecast for a desired time horizon. General structure of the
system is depicted in Figure 1.

Fig. 1. Modular structure of the forecasting system ELVIRA

As an illustration, consider the short-term load forecasting
module that performs prediction of the next day value of
gas load based on the real values of consumption and
temperatures, as well as the weather outlook. The module
uses a nonlinear multiple regression model which takes into
account current and past values of temperature, calendar and
seasonal effects, as well as an autoregressive term correcting
the past prediction error. The module provides a number of
parameters that can be tailored to particular customer. The
use of this module is illustrated in Figure 2.

Fig. 2. ELVIRA – results of short-term load forecast

Although this module provides highly accurate predictions
for the time periods that can be considered either heating or
non-heating season, it is unable to effectively cope with tran-
sient “between-season” periods. This led to the development
of two separate modules: a summer module that is able to

predict the summer load including the decreasing gas usage
in the spring; and a winter module that is able to predict
the winter load as well as the increasing gas consumption in
the fall. The use of two (or more) modules has the potential
of significantly improving the quality of load predictions.
Indeed, an appropriate method for combining the results of
individual modules is required.

B. Mixture Models

The basic idea behind mixture models is to divide a
complex problem to several subproblems that can be solved
using simpler partial/local models. The solutions to the
subproblems are then combined to yield a solution to the
overall problem. Algorithms of this type typically consist of
two classes of modules [4]. A gating module that selects
a module of the other class to solve a particular part of a
problem, and combines the partial results; and two or more
solution modules providing the partial results to specific parts
of the problem space.

Two main problems to be solved by a mixture model are:
(i) splitting of the input space into a number of regions, and
(ii) finding an appropriate solution for each region which is
simple compared to a global solution. Depending on the way
in which the input space is partitioned, there are two major
classes of mixture models. Hard splitting algorithms [2], [9]
assign each point from the input space to only one region,
while soft splitting algorithms [7], [13] allow a point to
belong partially to more than one region. Soft splitting can
be generally based on probabilistic or possibilistic (fuzzy)
principles. Although the current gating module provides hard
splitting of the input space, its fuzzy-based soft splitting
extension is planned for the near future.

Mixture model approach to forecasting has a number of
advantages. First, each partial model can specialize on a
different region of the input space and their combination
may yield better results than possible with a global model.
This specialization can have different forms, such as adapting
to different noise levels [13]. In the case described in
this paper, the specialization is concerned with different
seasons (heating/non–heating), effectively eliminating prob-
lems associated with non–stacionarity of underlying time
series. Second, the gating system itself can provide important
additional information about the nature of the input space
(e.g. relevance of individual features or their combinations,
discovery of hidden dependencies, etc.).

C. Recurrent Neural Networks

Conventional feedforward neural networks can be used to
approximate any spatially finite function given a sufficient
set of hidden nodes [5]. Recurrent neural networks (RNN)
are fundamentally different from feedforward architectures
in the sense that they operate, in addition to an input
space, on an internal state space representing what already
has been processed by the network [1]. The state space
enables representation of temporally/sequentially extended
dependencies over long intervals. Trained RNNs can thus
exhibit virtually unlimited temporal dynamics and as such



are suitable for processing complex time series, including
non-stationary series corresponding to gas load processes.

There have been many different types of RNNs proposed
during the past three decades, including Elman [3] and
Jordan [6] networks. Based on its superior performance in
initial experiments, Jordan RNN is used to predict the start of
heating season in this study. This network is equipped with
a set of context units that receive a copy of the network’s
outputs and have self-recurrent connections as shown in
Figure 3. The number of context units corresponds to the
number of outputs. This form of recurrence is a compromise
between the simplicity of a feed-forward network and the
complexity of a fully recurrent neural network.

Fig. 3. Architecture of Jordan network

The state neurons are activated according to the following
expression:

si(t) = λsi(t− 1) + yi(t− 1), (1)

where yi(t − 1) is the activation of the i–th output neuron
at time t − 1, and λ is a positive coefficient of self-
recurrent connections. In general, λ < 1, and its actual
value determines how much of the past output activation is
considered in current network operation.

The outputs of the context neurons are then fed back to
the hidden neurons. Thus, the neurons of the hidden layer
receive a vector of values formed by concatenation of the
inputs and states of the network

z = [z1, z2, . . . , zn−1, zn,︸ ︷︷ ︸
from input units

zn+1, zn+2, . . . , zn+m]︸ ︷︷ ︸
from context units

,

where components zn+i = si, i = 1, . . . ,m, are derived
from the network’s output. This way, the behavior of Jor-
dan’s recurrent network can be simulated with a simple
feedforward network that receives the state not implicitly
through recurrent links, but as a part of the input vector [14].
Consequently, backpropagation training algorithm [11] and
its derivatives can be easily modified for such networks.

When used for prediction or classification of univariate
time series, the network has only one output neuron carrying
the predicted value or class label, respectively. The number
of input neurons is driven by the number of features used

Fig. 4. General architecture of the gating network

for given task, while the number of hidden neurons depends
on the structural and temporal complexity of the task and
should be determined experimentally. General structure of
such neural network is shown in Fgure 4.

III. GATING MODULE

To overcome the difficulties associated with using a single
global forecasting model, two separate models have been
constructed. Summer module to predict the summer load
including the decreasing gas usage in the spring; and winter
module that is able to predict the winter load as well as
the increasing gas consumption in the fall. To schedule
appropriate application of either model, a gating module
has been designed based on the concept of mixture models
summarized in the previous section. The overall scheme of
the forecasting system system is shown in Figure 5. In the
figure, xg, x1, x2 ⊆ x are the input vectors of the gating
module and the forecasting modules 1 and 2, respectively,
y1, y2 are the values predicted by each forecasting module
and gated by the gating signals g1 and g2, and y is the overall
prediction produced by the system.

Fig. 5. Structure of the gating system



The gating system is currently designed in a binary form,
i.e. forecast of only single module is considered at a time,
not their combination. It is, however, possible to extended
the system to soft/fuzzy case.

The gating module itself must process sequential infor-
mation related to the climatic and other conditions of the
environment where the forecasting system is used. This
requirement of sequential processing led to the choice of
recurrent neural networks as the implementation platform.

A. Feature selection

There are many features that could potentially have in-
fluence on forecasting model construction. Preliminarily, the
following features have been selected
• TD−h, h = 1, . . . , 5; temperatures h days prior the day

D for which forecast is performed;
• Dweek, day of week, to capture short-term changes in

load (e.g. weekdays, weekends, holidays, etc.);
• Dyear, day of year, to capture long-term changes in load

(e.g. seasons).
General validity of this initial feature set has been con-

firmed using correlation analysis. Later on, a set of ex-
periments has been performed to either confirm all these
features as relevant, or to get a more compact yet sufficient
set of features. Results of these experiments are reported in
Section IV.

B. Training and testing data

The data for training and testing of both forecasting
modules and the gating module have been compiled from
the following sources (all for the period of four years 2001-
2004)
• temperature records (daily mean temperatures);
• calendar records (weekdays, holidays);
• measured gas load (daily consumption);
• expert estimates of start/end of heating season;

The data sets have been merged and preprocessed to rep-
resent the features identified earlier. The temperature data
has been directly grouped into sequences of five consecutive
values using the method of sliding window.

To distinguish not only between working and non–working
days but also among different types of these days (e.g.
working day before weekend vs. working day after weekend),
so called WN coding has been adopted. In this coding,
character of the day for which forecast is performed, D, is
provided in the context of the surrounding (i.e. immediately
preceding and immediately following) days. Using labels 1
(working) and 0 (non–working), eight possibilities shown in
Table I can be encoded.

The day of year could be coded directly using its se-
quential number in year (a.k.a. Julian code). However, this
would bring problems associated with the abrupt change of
such code at the turn of year. For this reason, trigonometric
encoding scheme [12] has been adopted that provides a
smooth coding of the day of year. In this coding scheme,

TABLE I
WN CODING

Code Example

111 Tuesday (standard week)

110 Friday (standard week)

101 mid–week holiday

100 Saturday (standrad week)

011 Monday (standard week)

010 e.g. Monday December 24

001 Sunday (standard week)

000 long weekend

each day is encoded using two values, Dyear
sin and Dyear

cos ,
derived from the Julian code as follows

Dyear
sin = sin

2πDyear

366
,

Dyear
cos = cos

2πDyear

366
,

where Dyear is the Julian code of the day. Finally, the
expert estimates of the start/end of heating season have been
encoded using values 0 (non-heating) and 1 (heating).

Each data point is thus represented by an 11–dimensional
vector

[TD−5, TD−4, TD−3, TD−2, TD−1, . . .

. . . Dweek
D−1 , Dweek

D , Dweek
D+1 , Dyear

sin , Dyear
cos , gD],

where gD is the desired value of gating signal (season
indicator) for day D.

A total of 1461 data points from the period 2001–2004
have been collected this way. Approximately 75% of the
data (years 2001–2003) has been used for the gating module
development and 25% of the data (year 2004) has been seg-
regated for testing. Table II contains information regarding
the temperature ranges and heating days percentages for the
training and testing data sets.

TABLE II
COMPOSITION OF THE DATA SETS

Data
set

Calendar
year

Heating
days

Daily averages [◦C]

min max avg

Training

2001 65.5% -10.1 25.3 8.9

2002 63.0% -13.1 26.6 9.9

2003 58.9% -9.7 28.2 9.9

Testing 2004 68.6% -11.0 24.9 9.3

C. Gating Network

The overall structure of the gating network is depicted
in Figure 6. The input layer contains ten input neurons
labeled 1.1-10 and one context neuron labeled 1.11. While
the input neurons receive the external inputs corresponding



to the features identified in the previous subsection, the
context neuron receives the output of the network - gating
signal indicating presence of conditions corresponding to
the heating season and thus the need to use appropriate
forecasting module. The input neurons have linear activation
function as they serve only to distribute the input signals
to the neurons of the hidden layer. All remaining neurons of
the network, including hidden neurons 2.1-6, context neuron
1.11 and output neuron 3.1, have unipolar logistic activation
function

y =
1

1 + e−u
,

where u represents the net input to the neuron and y is the
neuron’s output.

The network has been constructed in Stuttgart Neural
Network Simulator [14] and trained using Rprop learning
algorithm [10] with the following parameters: initial step-
size ∆0 = 0.3, maximum step size ∆max = 30.0, weight
decay exponent α = 4.0 and teacher forcing 50% (see [14]
for description of the learning parameters).

IV. EXPERIMENTAL RESULTS

In this section, the results of two sets of experiments are
presented. The first set was designed to determine the most
appropriate set of features that should be included as the
inputs of the gating module. The second set of experiments
was performed using the actual forecasting modules, to
assess the the accuracy of the overall prediction system.

A. Feature set size determination

To determine the most appropriate set of features for the
gating module, the recurrent neural network from Figure 6
was modified to accommodate appropriate number of inputs.
The size of hidden layer was kept at about 60% of the
size of the input layer. The experiments started with only
3-dimensional input vector containing the temperatures from
3 days preceding day D. Other features were added, individ-
ually or in groups, as indicated by x-marks in Table III.

TABLE III
FEATURE SELECTION

TD−5 x x x x

TD−4 x x x x x

TD−3 x x x x x x

TD−2 x x x x x x

TD−1 x x x x x x

Dweek x x

Dyear x x

Training 72.6% 78.2% 88.6% 92.3% 94.3% 98.9%

Testing 76.0% 92.9% 92.8% 94.5% 95.4% 94.7%

For each of the six sizes of the feature set, ten independent
trials have been conducted involving initialization and train-
ing of the network, and running the trained network to obtain
results for the testing test. The results reported in the table

represent the percentage of days that have been identified
correctly as heating/non–heating, averaged over the ten trials.
Based on the results reported in Table III, all ten features
have been used to build the gating network.

Fig. 6. Final architecture of the gating network

B. Load forecasting results

After the gating network was constructed and trained,
its output was used to gate the two forecasting modules
of ELVIRA. The results obtained this way were compared
to the actual (measured) values of gas load, both for the
period covered by the training and testing sets. Measures
used to compare the results are mean absolute prediction
error (MAPE), and percentage of correct predictions at the
levels of 25% and 10% (Pred(25) and Pred(10)). Results of
these experiments are reported in Table IV.

TABLE IV
RESULTS OF GAS LOAD FORECASTING SYSTEM OBTAINED WITH

GLOBAL AND GATED MODELS

Model Set MAPE Pred(25) Pred(10)

Global
Training 8.4% 89.5% 78.9%

Testing 6.3% 95.7% 80.3%

Gated
Training 3.8% 99.0% 93.9%

Testing 3.6% 99.8% 94.0%

It can be seen that the use of gated model further improves
accuracy of the forecasting system. Looking at the results



received with the testing set, the mean absolute prediction
error was been lowered by almost 3%, while the proportion
of load values predicted within 10% of the actual values
increased from 80.3% to 94.0%.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a new mixture model has been introduced
to improve results of a statistical system for gas load
forecasting. The gating module of the model is based on
Jordan’s partial recurrent neural network and, as such, it is
able to learn and predict time series that exhibit complex
non-stationary behavior.

The current gating system provides binary output used
for switching between the two available forecasting mod-
ules based on actual climatic and seasonal conditions. It
is planned to extended the current model to provide soft
boundaries between the seasons and to blend the results of
the forecasters instead of just considering one and ignoring
the rest.

Another expected continuation of the present work is
its extension to predictions with different time horizons
(i.e. medium– and long–term predictions). An interesting
aspect of such extension will be sensitivity analysis of the
system necessary due to the need of using weather outlook
information hindered by uncertainty.

ACKNOWLEDGMENT

This work was supported in part by the Grant Agency
of the Academy of Science of the Czech Republic under
grant No. 1ET4003005e13, and by the Natural Sciences and
Engineering Research Council (NSERC) of Canada.

REFERENCES

[1] M. Bodn, A guide to recurrent neural networks and backpropagation,
Report from the NUTEK-supported project AIS-8: Application of Data
Analysis with Learning Systems, 1999-2001. Holst, A. (ed.), SICS
Technical Report T2002:03, SICS, Kista, Sweden. 2002.

[2] L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone, Classification
and Regression Trees, Wadsworth International Group, Belmont, 1984.

[3] J. L. Elman, Finding structure in time, Cognitive Science, 14, 1990,
pp. 179–211

[4] C. Gilde,Time Series Analysis And Prediction Using Recurrent Gated
Experts, MSc Thesis, University of Skövde, Sweden, 1996

[5] K. Hornik, M. Stinchcombe, H. White, “Multilayer feedforward net-
works are universal approximators”, Neural Networks, 2, 1989, pp. 359–
366.

[6] M. I. Jordan, “Attractor dynamics and parallelism in a connectionist
sequential machine,” In Proc. Proceedings of the Eighth Conference of
the Cognitive Science Society, 1986, pp. 531–546

[7] M. I. Jordan, R. Jacobs, “Hierarchical mixtures of experts and the EM
algorithm”, Neural Computation, 6, 1994, pp. 181–214

[8] E. Pelikan, M. Simunek , T. Brabec, “Load Forecasting using the System
Elvira,” In Proc. Proceedings of the 3rd SIMONE workshop, Cesky
Krumlov, Czech Republic, May 11-14, 2004 (CD proceedings)

[9] J. R. Quinlan, “Induction of decision trees”, Machine Learning, 1(1),
pp. 81–106

[10] M. Riedmiller, H. Braun, “RPROP – a fast adaptive learning algo-
rithm.” In Proc. of ISCIS VII,1992

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
Representations by Back-Propagating Errors,” Nature, Vol. 323, 1986,
pp. 533–536

[12] N. H. Viet, J. Mandziuk, “Neural and Fuzzy Neural Networks for
Natural Gas Consumption Prediction”, In Proc. 2003 IEEE XIII Work-
shop on neural Networks for Signal Processing, (NNSP03), Toulouse,
France, pp. 759–768

[13] A. S. Weigend, M. Manegad, A. N. Srivastava,“Nonlinear gated
experts for time series: discovering regimes and avoiding overfitting”,
International Journal of Neural Systems, 6, 1995, pp. 373–399

[14] A. Zell et al. SNNS: Stuttgart Neural Network Simulator. User manual,
University of Stuttgart, Germany, 1994


