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Abstract

The widespread adoption of mobile electronic devices
and the advent of wearable computing has encouraged the
development of compact alternatives to the keyboard and
mouse. These include one-handed keyboards, digitizing
tablets, and glove-based devices. This paper describes a
combination pointer position and non-chorded keystroke
input device that relies on miniature wrist-worn wireless
video cameras that track finger position. A Hidden Markov
Model is used to correlate finger movements to keystrokes
during a brief training phase, after which the user can type
in the air or above a flat surface as if typing on a stan-
dard keyboard. Language statistics are used to help dis-
ambiguate keystrokes, allowing the assignment of multiple
unique keys to each finger and obviating chorded input. In
addition, the system can be trained to recognize certain fin-
ger positions for switching between input modes; for exam-
ple, from typing mode to pointer movement mode. In the
latter mode of operation, the position of the mouse pointer
is controlled by hand movement. The camera motion is es-
timated by tracking environmental features and is used to
control pointer position. This allows fast switching between
keystroke mode and pointer control mode.

1 Introduction

The increasing popularity of small portable electronic
devices has driven demand for new input technologies. For
example, handwriting recognition using pressure sensitive
screens and a stylus has been successfully incorporated on
many handheld computers. Onscreen keyboards and small
’thumboards’ are another popular input method. However,
input speed achieved with these devices is slow relative to
standard keyboards [9]. The surface area available for in-
put is even less on cellular phones, where 12 digit numer-
ical keypads usually do double duty for text entry. Gener-
ally, when mobile phone keypads are used for text input,

each key is mapped to three or four letters and predictive
text entry algorithms are used to disambiguate keypresses.
The application of predictive text entry methods to mobile
phone text entry has significantly lowered the average num-
ber of keystrokes required per character (KSPC), from 3
KSPC to close to 1 KSPC. Nevertheless, key sequences for
shorter words are often ambiguous, and the limited keypad
size makes input speed slow relative to full-size keyboards.
See [9] and [12] for a review of keypad based mobile input
technologies.

Mobile computing and wireless networking technology
has advanced the integration of computing into everyday
life. Globally, over 1 billion SMS messages are sent per
day, and mobile phone use for messaging and internet ac-
cess continues to grow, motivating the need for simple and
efficient portable input devices. An alternative to keypad
based input is based on virtual keyboards, that do not rely
on an input surface or physical keys to detect input. For
example, the keyboard is projected onto a flat surface and
keypresses detected by infrared ranging sensors in [16].
The increasing sophistication of mobile technology has also
supported the emergence of multimedia, entertainment, and
augmented reality applications for mobile computers. Aug-
mented reality and wearable computers in particular require
input interfaces that are lightweight and unobtrusive.

One barrier to the adoption of wearable computing de-
vices is the absence of an input interface that allows the
user to interact with the system while standing or moving.
Typically, portable keyboards must be set or held in place
to be used effectively. One approach to solving this prob-
lem is one-handed (split) keyboards. However, wearing a
wrist-mounted split keyboard interferes with the use of the
hands to do other tasks. Glove-based devices incorporating
flex sensors within the glove fingers are less cumbersome,
allowing free use of the hands. Another input method an-
alyzes the data collected from tiny accelerometers worn on
each finger to determine user input [3]. An even less ob-
trusive approach is virtual glove based input devices, that
use wrist mounted sensors to track hand and finger posi-

Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications (PERCOM>?@) 
?-C@DE-FEGH-?I?@ JF?K?? L F??@ IEEE 



tion. For example, the lightglove [6] uses infrared LEDs
and sensors worn on the arm to track finger position and
allows the control of electronic systems. The concept of us-
ing wrist mounted cameras as input devices is introduced in
[21], where the fingers are tracked and used as input. Vir-
tual glove based devices enable the user to interact with a
mobile computer while moving, and allow free use of the
hands while not in use. However, the devices mentioned
above rely on a chorded input scheme to interpret finger
movements. Since there are only 10 fingers available to rep-
resent all alphanumeric characters, several fingers must be
moved simultaneously for each input. This requires the user
to learn a new method of input.

The input system described in this paper can interpret
non-chorded input, allowing the user to type as if using a
standard keyboard, as each finger can be used to type sev-
eral different characters. For example, a user trained on a
QWERTY keyboard moves the little finger of the left hand
to type the Q, A, and Z keys. Probabilistic models of fin-
ger movement and language are learned and used to resolve
ambiguous inputs. Using a learned observation model also
allows the mapping of finger movements to commands to
be adapted to each user. Thus, QWERTY, DVORAK, or
any user-defined keymappings can be used. The use of
cameras accommodates accurate tracking of the position of
each finger at all times. In addition, environmental features
can be tracked to determine the movement of the hand it-
self. The incorporation of vision-based ego-motion estima-
tion provides for an intuitive method of pointer control by
translating hand movements to pointer movements. As a
wearable input device, the complete system consists of two
wrist worn cameras, a wearable computer used to process
the images, and a head mounted display.

This paper is organized as follows. Section 2 describes
the keystroke detection and recognition process. Section
3 describes how to switch between keystroke and pointer
control modes, and section 4 details the implementation of
pointer control by vision-based motion estimation. In Sec-
tion 5, experimental results obtained from the prototype sys-
tem are discussed. Conclusions and possible extensions are
explored in Section 6.

2 Keystroke Detection and Recognition
Overview

The prototype system is shown in figure 1. A wire-
less color camera is worn on the underside of each wrist.
The images are transmitted to a receiver connected to a
computer that processes the video stream in real-time. As
keystrokes are being input, the hands can be moved in any
desired position including by the users sides, and do not
need to be held stationary.

The fingertips are tracked continuously, and keystrokes

Figure 1. The prototype

are detected when one or more fingers deviates from the rest
position above a distance and speed threshold. Keystroke
movements are assigned to characters during a training
stage, and a Hidden Markov Model (HMM) is used for char-
acter recognition. The three stages of detecting and identi-
fying keystrokes are described below.

1. Hand Extraction and Fingertip Recognition

• The hand contour is extracted from the images by
skin color discrimination;

• The fingertips are detected as the minima of the
extracted hand contour

2. Keystroke Detection

• The finger rest position is recorded in an initial-
ization stage;

• Fingertip position is tracked over time, and
keystrokes are recognized as peaks in the devia-
tion of the finger position from the observed rest
position

3. Hidden Markov Model Based Character Recognition

• The correlation between finger movement and
character/command input is observed during a
brief training phase;

• During operation, keystrokes are interpreted as
characters and language statistics are used to dis-
ambiguate keystrokes.

2.1 Hand Extraction and Fingertip Detection

The video camera worn on the underside of each wrist
continuously records the hand and fingers. The contour cor-
responding to the edge of the hand is extracted from the im-
age stream by means of color segmentation. Pixels whose
value lies within a predefined range corresponding to skin
color are extracted, exploiting the alignment of the fingers
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Figure 2. Stages in image preprocessing. The
figure shows 1)the image after skin color de-
tection, 2)after erosion and dilation, 3) the
extracted edge contour and 4) the smoothed
contour and extracted interest points

relative to the camera to aid in extraction. Since the fin-
gers are aligned nearly vertically in the camera images, skin
color extraction proceeds column by column starting at the
top left corner of each image. Columns of the image are
searched for consecutive sequences of skin colored pixels
longer than a predefined threshold, and the bottommost run
of pixels in each column is marked as an edge contour of
the finger.

The minimum run length threshold affords some robust-
ness to noise caused by variations in illumination conditions
and similarly colored objects in the environment. Further
invariance to changes in illumination can be achieved us-
ing an adaptive skin color classifier as in [17]. After the
first stage of segmentation, the image is converted into a
binary image. All pixels that are within the derived hand
contour are non-zero within the binary image, and all pixels
not considered part of the hand are assigned a value of zero.
An erosion filter is then applied to the binary image to re-
move any remaining noise by eliminating small patches in-
correctly identified as part of the hand. Then, a dilation fil-
ter is applied to fill in spots within the hand and fingers that
were incorrectly classified as non-hand regions. Finally, the
extracted edge contour is smoothed with a gaussian filter,
and the contour minima are identified as fingertips and the
maxima as phalanges. The preprocessing stages are shown
in figure 2.

Four fingers and three phalanges are visible within the
field of view of the camera, giving seven interest points to
describe the hand and finger position. Figure 3 shows the
fingertip and phalange detection, as well as the centroid of
the interest points.

Figure 3. The seven interest points and de-
tected orientation of the hand

2.2 Keystroke Detection

2.2.1 Initialization and Normalization

Observations of the system consist of the position and ve-
locity of the four fingertips that are visible in the cameras
field of view. Initialization of the system involves recording
the rest position of each of the interest points. The coor-
dinate system used for all measurements is defined by the
centroid of the seven interest points and the alignment of
the hand. A median filter is applied to the position mea-
surement of the centroid so that it remains stationary during
a keystroke. The centroid is used as the origin of the coordi-
nate system, and the orientation of the axes is determined by
the angle of the ring and middle fingers relative to the image
plane. Normalizing the position of the fingertips relative to
this coordinate system accounts for shifts in the position and
alignment of the camera over time.

2.2.2 Peak Detection

After normalization, the position in polar coordinates, ri

and θi, and speed vi of each fingertip relative to its rest po-
sition is tracked. Thus at any particular moment of time,
each of the four finger tips xi(i = 1..4) is defined by a 3
dimensional vector < ri, θi, vi >

Keystrokes are detected as maxima in fingertip distances
relative to their rest positions. Generally, one or more fin-
gers will move for each keypress and the distance reading
for all fingers will peak at approximately the same time.
Peaks that occur within a five frame window, corresponding
to a time frame of 0.17 seconds at 30 frames per second, are
clustered and interpreted as a single keystroke.

There is considerable noise in the position readings,
which would lead to spurious keystroke detections without
smoothing the positions over time. A low-pass filter is ap-
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plied to the fingertip positions to remove noise. For the sys-
tem to be usable, keystrokes must be detected immediately
and thus a causal filter with minimum lag is required. In
addition, peak attenuation needs to be minimized in order
to maintain accurate position measurements. An first or-
der low-pass filter was used to attain the best compromise
among noise reduction, peak attenuation, and delay charac-
teristics.

2.3 Hidden Markov Model Based Character
Recognition

Hidden markov models are commonly used in speech
recognition and have found growing application in vision
research as well. HMMs are particularly well suited to
tasks involving the interpretation of noisy, continuous ob-
servations into small symbol vocabularies, such as in hand-
writing and gesture recognition. For example, HMMs have
been used to recognize playback commands for a portable
DVD player using embedded accelerometers [13]; head and
hand gestures such as pointing, hand waving, and nod-
ding [15]; and American Sign Language gestures using a
fixed camera [18]. Typically, in machine vision based ges-
ture recognition, a static camera is placed in front of the user
and records movement of the hands, arms and head. The
recognition system then interprets the sequence of move-
ments as a set of words or commands.

The input to a handwriting or gesture recognition sys-
tem consists of a continuous stream of data that must be
segmented into meaningful units and interpreted as a se-
quence of discrete states. States can represent gestures, let-
ters, words, or commands. In the case that the states are not
directly observable and must be deduced, a hidden markov
model can be used to determine the most probable underly-
ing state sequence from a series of observations.

The states in an HMM are inferred on the basis of the
observation model and transition model that are associated
with each state. The observation model describes the re-
lationship between system outputs and states, allowing the
determination of the most probable state for any given out-
put. The transition model consists of a table of probabilities
of moving from one state to any other state.

To summarize, HMMs require the following elements

1. A finite number of states Q;

2. A set of output probabilities B, which may be discrete
or continuous;

3. A set of state transition probabilities A

For keystroke recognition, each state in the HMM corre-
sponds to a single alphanumeric character. At each detected
keystroke, the most likely character is determined using the
observation and transition models. As described above, the

Figure 4. An HMM. For keystroke recogni-
tion, each state S is a character, the transi-
tion model is based on letter bigram proba-
bilities, and the observation model contains
finger position and speed vectors

observation model relates system observables (fingertip po-
sitions and speeds) with hidden states (the characters that
the finger movements represent). The observation model is
learned during training by correlating each character in the
training set with the output vector observed during its cor-
responding keypress. Often, two or more keys, such as the
’a’ and ’z’ keys, have similar observation vectors. The state
transition model is used to disambiguate keystrokes. It is
based on a language model that is derived from the analy-
sis of a large corpus of text. The observation and transition
models are described in detail below.

2.3.1 Observation Model

Observations consist of a set of vectors that describe the
position and speed of each fingertip during the instant of a
keypress. Each observation is made up of four vectors, one
for each finger, each containing three elements; the position
of the finger relative to its rest position in polar coordinates,
and the speed of the fingertip. In the current implementa-
tion, the thumb is not consistently present in the cameras
field of view, and is ignored.

Finger tip positions and speeds constitute a continuous
observation space, so that the observation model must be
expressed in terms of a probabilistic function. In general,
the observation symbol probability distribution B = {bj(k)}
is denoted by

bj(k) = P (ot = k|qt = j) (1)

bj(k) is the probability of observation k given that the
current state is j. In the case of keystroke recognition,
each observation k consists of 4 vectors, each containing
the position and speed of a fingertip during a keypress.
k = 〈k1, ...,k4〉 where each ki =< ri, θi, vi >, the fin-
gertip position and speed relative to its rest position. Each
state j is an alphanumeric character.
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A 3D gaussian distribution describes the probability of
observing k for each character j.

P (ot = k|qt = j) = N(k − µj,σj) (2)

where µj =< µr, µθ, µv >j , is the mean finger position
and speed for character j;
σj =< σr,σθ,σv >j is the variance; and
N is the gaussian function 1

σj

√
2π

e−(k−µj)
2/2σ2

j

Thus given an observation vector k, the probability that
it represents character j is inversely proportional to the dis-
tance between k and the vector corresponding to the charac-
ter, taking into account the variance of each vector element.
The means and variances of the vectors associated with each
character are learned during a short training stage, and con-
tinuously improved during operation. To shorten training
time, the variances are set to uniform initial values for each
finger.

During training, the user is asked to type a small para-
graph of text. As the user types, keypress events are de-
tected, and the current observation vector is associated with
the next character in the training text. At the end of the
training stage, each character has been typed several times
and has several observations associated with it. On comple-
tion of training, each character is defined by the mean and
variance of the set of observation vectors that was assigned
to it.

Finger movements vectors that have a strong association
with a particular character exhibit low variance, and are
therefore most heavily weighted in the observation model
described above. Similarly, finger movements that are are
not consistently observed for a specific character have a
higher variance, and do not factor as strongly towards iden-
tification of the character. For example, if the index finger
consistently moves to the same position for a certain char-
acter, but the position of the ring finger varies widely, the
observation model for that character relies more heavily on
the index finger observation. Thus the system is robust to
variations in finger movements during a keystroke, as long
as at least one of the fingers moves in a consistent way for
each letter. Figure 5 shows the observation vectors for the
middle and index fingers for a subset of keys.

2.3.2 Character Disambiguation

The statistical regularities of language have been exploited
for many purposes including spelling correction in word
processors, automatic speech recognition, and predictive
text entry in mobile phones. A language model can greatly
aid in interpreting noisy or ambiguous text. For example,
mobile phones are commonly used to send text messages
and retrieve information from the internet. However, the
limited number of keys on numerical keypads requires that

y
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Figure 5. The mean position and speed vec-
tors for the middle and index fingers of the
left hand. The outline of the middle finger
is on the left, and the index finger is on the
right. Circles indicate the rest position, and
other symbols represent letters. The length
of the line attached to each symbol corre-
sponds to the finger speed magnitude during
a keystroke.

several characters be mapped to one key, leading to ambigu-
ous inputs. There are two main approaches to determining
the desired text; dictionary-based approaches and statistical
approaches. Dictionary-based predictive text entry involves
searching a dictionary for words that are consistent with an
observed sequence of key presses. Often several allowable
words are found, and the user must make additional key-
presses to select the correct one. In addition, the desired
keys are not known until the entire word is typed. Statis-
tical approaches to predictive text entry have attempted to
address these issues by taking advantage of the statistics of
word and letter sequences. Certain combinations of letters
and words are more probable than others. Thus a proba-
bilistic language model can be created by extracting the rel-
ative frequencies of letter and word combinations from a
large body of text. With the aid of a probabilistic language
model, ambiguous inputs can be resolved.

In this paper, the most probable word corresponding to
a sequence of keystroke observations is determined in a
two stage process using both word frequency and letter pair
(bigram) frequency. While a word is being typed, indi-
vidual keystrokes are disambiguated based on the previous
characters using a letter bigram model (LBM). This model
increases the accuracy of keystroke recognition substan-
tially relative to a naive system that relies only on obser-
vations. However, the recognition rate can be even further
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improved by incorporating word frequencies into the proba-
bility model. This is accomplished by considering the most
likely character sequences determined by the letter bigram
model, and rescoring them using a word frequency table.
The two components of the language model are described
below.

The letter bigram transition model estimates the most
probable current input character ln based on the previously
observed character ln−1:

P (ln|ln−1) =
C(ln−1ln)
C(ln−1)

; (3)

where C(ln−1ln) is the number of times that the bigram
ln−1ln is observed in a large corpus of written text. The
generated model consists of a table A = aij of letter pairs
and their probability of occurring. Each table entry aij con-
tains the probability the letter j follows letter i.

After each detected keystroke, the generalized Viterbi al-
gorithm [5] is used to determine the most likely character
according to the observation and transition models. The
algorithm calculates the probability of each character by
combining information from the two models, and orders the
characters by probability. The most likely character is dis-
played on the screen.

The possible letter sequences can be considered as a trel-
lis with weighted links between the candidate characters for
each keystroke. Part of a possible trellis structure gener-
ated after observing four keystrokes is shown in figure 6.
The strength of the observation probabilities are represented
by circle thickness, while the transition probabilities corre-
spond to line thickness. While characters in the top row
of the trellis have the highest observation probabilities, the
best path through the trellis relies on both the observation
and transition models. In this case the best path is d-r-a-w.
As each keystroke is detected, the Viterbi algorithm identi-
fies the most probable character by considering:

1. The probability of each previous character i

2. The transition probability aij from each previous char-
acter to each current character j

3. P (o|j), the probability of the finger movement obser-
vation vector o, given that the current character is j

The above probabilities are combined to find the likeli-
hood of each character. For the very first letter in a word,
only the observation probability is considered. Finally,
when the space character is observed, the sequence is termi-
nated. The set of the m-most likely letter sequences, {wm},
only some of which are valid English words, is saved. The
Viterbi algorithm is explained in depth in [14].

The letter bigram model provides a good statistical
model of letter sequences within words. However, by in-
corporating a higher level model of word probabilities the

Figure 6. A portion of a character trellis. Cir-
cle boundary thickness represents observa-
tion probability and line thickness represents
transition probability

accuracy of the system can be further improved. So, each
letter sequence wm =< l1...ln > generated by the gen-
eralized Viterbi algorithm is rescored according to a word
unigram model (WUM). The word model is a table of word
frequencies derived from analyzing a large section of text.
The probability of word wm is defined as the number of
times the word has been observed divided by the total num-
ber of tokens in a body of text.

P (wm) =
C(wm)

N
(4)

where C(wm) is the count of word wm, and N is the total
number of tokens. The language models described above
are created using the British National Corpus, a 100 million
word sample of written and spoken English derived from
a wide variety of sources. In [10] the BNC is tokenized
and composed into a list of words ordered by frequency.
The comprehensive word frequency list contains 939,028
unique words, including many proper names and colloqui-
alisms. However, the rapid evolution of language on the
internet continuously introduces new words and names that
are often not included in large compiled lexica. One method
of keeping an up-to-date lexicon is to integrate search query
logs into the word list. Live updates of search queries are
readily accessible online1 and can be logged to generate a
continuously evolving vocabulary.

The information provided by the letter bigram model
LBM and word unigram model WUM is combined to de-
termine the most probable word. The logarithm of the prob-
abilities derived from each model are added to determine
the final score, and the word with the maximum score is
displayed.

W ∗ = argmaxn[P (wn|LBM) + αP (wn|WUM)] (5)

α is a weighting applied to the word model to determine its
relative bearing on the score. W ∗ is the most likely word
as determined by combining the results of the Viterbi algo-
rithm and word model.

1www.metaspy.com
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3 Mode Selection

During training, finger positions are used to select be-
tween the different modes of operation. Modes include al-
phabetical text entry, pointer control mode, and sleep mode.
The system enters pointer control mode upon recognition
of a specific finger position, and returns to text entry mode
when the fingers return to the rest position. Figure 7 shows
the open-handed finger position that has been trained to ini-
tiate pointer control mode. In sleep mode, finger movement
and motion tracking are not used for input. Instead, the fin-
gers are tracked passively until the keystroke assigned to
resume input is detected. The pointer control mode is de-
scribed below.

4 Pointer Control

Several pointer input devices have been developed to
perform the task of pointer control on graphical displays.
Pointer input devices designed for mobile computers aim
to emulate the speed, accuracy, and intuitiveness of the
standard computer mouse but in a more compact form.
On notebook computers, trackballs, trackpads and micro-
joysticks have enjoyed the most success, while touch sen-
sitive screens and styluses are mainly used with handheld
computers. The limited screen sizes on cellular phones has
allowed pointer keys to function reasonably well for pointer
control, but the convergence of handheld and mobile phone
technology has driven the integration of large graphical dis-
plays. Consequently, accurate pointer control has become
more significant.

In addition, wearable computer systems often employ
head-mounted displays (HMD) that project an image di-
rectly in front of the eye, rather than on a large surface.
In such a setup, touch sensitive screens can not be used.
For wearable systems, pointer control by hand movement
is a more convenient approach. The movement of the wrist-
worn camera itself, rather than the fingers, is used to control
the pointer.

4.1 Description of Operation

Pointer control is accomplished by means of vision-
based ego-motion estimation using the video from one of
wrist-worn cameras. In pointer control mode, the user’s
hand movements are estimated in order to generate a pro-
portional movement in the position of the pointer on the
screen. Pointer control is initiated upon recognition of a
specific finger position that the system has been trained to
recognize in the observation model training stage described
above. As long as the finger position corresponding to
pointer control mode is maintained, the motion of the hand
is used to control the speed and direction of the pointer. The

motion of the wrist-worn camera is determined by selecting
salient features from each frame of video, and tracking each
feature over time. Pointer movement control is thus accom-
plished in four stages: feature extraction; feature tracking;
camera motion estimation using tracked feature points; and
scaling the camera movement to move the onscreen pointer.
Button presses are identified by finger movements in the
same way that keystrokes are recognized.

4.2 Feature Extraction and Tracking

To determine the motion of the wrist worn camera, en-
vironmental features that can easily be recognized across
frames must be detected and tracked. Since the position of
the user’s hand is fixed relative to the camera, the first step
of feature extraction is to remove the hand from each frame
of video, leaving only the background. Since the hand has
already been detected in the fingertip detection stage, the
hand shape simply needs to be subtracted from each frame.

The next step involves extracting features from the image
sequence that are easy to track from frame to frame. Some
candidate features include lines, corners, and more complex
geometric features. The more unique the feature, the more
reliably it can be tracked. However, detecting and tracking
complex features requires increased computation time. In
this paper, corners are detected using the Harris corner de-
tector [4], providing a balance between detection speed and
tracking robustness.

The Harris detector is used to detect features in the im-
age that have strong gradients in two orthogonal directions.
The best corners in each frame, along with the surrounding
block of pixels are selected as good features and saved.

4.3 Motion Estimation

In each successive frame, each corner feature is com-
pared to corners within a local neighborhood of the initial
feature position. The similarity of the feature template to
each candidate corner is determined using a sum of squares
difference (SSD) error measure. The candidate feature that
is most similar to the template is selected, and the feature
position is updated. Features for which no match are found
are considered lost, and new features are acquired to replace
them. Generally, 70% of features are kept from one frame to
another. The movement of each tracked feature provides in-
formation about the cameras direction of movement. How-
ever, some of the feature matches will be incorrect. The
Random Sample Consensus (RANSAC) algorithm [2] is
used to determine the camera motion that is consistent with
a large number of tracked features.

In the current implementation, the image motion is fit to
a two dimensional movement model; camera motion per-
pendicular to the image plane is ignored. The RANSAC
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Figure 7. Corner Tracking in Pointer Control
Mode

algorithm determines the most likely movement as follows:

1. Select one of the feature movement vectors at random
and use it as the movement model.

2. Count K , the number of movement vectors that fit the
model within a given tolerance.

3. If K is bigger than the minimum desired consensus
Kmin, exit successfully

4. Otherwise, repeat the above steps I times or until a
correct model is found

In practice, the parameters Kmin and I are set to attain
a balance between accuracy and computation time. The
higher Kmin and I are set, the more likely the RANSAC
algorithm will determine the correct motion.

4.4 Pointer Movement and Button Presses

After determining the most probable magnitude and di-
rection of motion, the movement vector is scaled and ap-
plied to the pointer position. During training, the finger po-
sition corresponding to a mouse button click is recorded. As
long as this finger position is maintained, the virtual button
is held in the depressed position.

5 Experimental Results

A prototype system was implemented on a single wrist-
worn color wireless camera. The camera captures images at
a frame rate of 30 fps at a resolution of 320x240 pixels. The
receiver was connected to a PC equipped with a video cap-
ture card, and processing was done on a 1533 MHz AMD
Athlon system. The prototype system is shown in figure 1.
During the evaluation, the camera was worn on the left hand
and the training data was displayed on a monitor. Testing of
the keystroke input and pointer control modes was done in
a well-lit indoor environment.

Table 1. Character Recognition Accuracy
Language
Model

No Lan-
guage
Model

Letter
Bigram

Letter
& Word
Model

Accuracy
[%]

67 84 90

5.1 Typing

The letter bigram and word unigram models were de-
rived from the British National Corpus as described in sec-
tion 2.3.2. For the purposes of training and testing one-
handed input, a selection of text that can be typed using
only the left hand was extracted by selecting words consist-
ing exclusively of characters from the following set

Q, W, E, R, A, S, D, F, Z, X, C, V

A touch-typist was trained on a 300 word test set over a pe-
riod of one hour. Each character was typed approximately
25 times, and the mean and variance of each finger move-
ment vector was calculated after the completion of the train-
ing stage.

After training, a 200 word test file was used to measure
recognition accuracy and speed. In the testing stage, after
each keystroke is detected, the most likely character was
displayed on the screen. Finger movements incorrectly rec-
ognized as keystrokes (false positives) were classified as er-
rors, while undetected keystrokes were retyped. The right
hand was used to click a mousebutton to signal the comple-
tion of each word, at which time the most likely word was
displayed on the screen.

5.1.1 Character Recognition Accuracy

Table 1 describes the character recognition accuracy with
and without the help of the language models. As the ta-
ble shows, the observation model alone provides a char-
acter recognition rate of 67%. Character recognition er-
rors are a result of the ambiguity and high variance of
keystroke movements. In general, sets of characters that
are typed with the same finger on a qwerty keyboard, such
as {e,d,c} exhibit similar observation vectors and are eas-
ily confused. Of the incorrectly recognized words, 16 were
due to character substitution errors, and 6 were due to spuri-
ous keystrokes. Several methods could be used to improve
the accuracy of the observation model. For example, in-
cluding angular direction rather than just speed v in the
observation model provides more information to help dis-
cern keystrokes. Nevertheless, while the observation model
alone does not always recognize the correct character, the
letter bigram transition model improves the recognition rate
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substantially to 84%. The word model further improves the
character recognition rate. Thus in some cases, the char-
acter is misidentified immediately after a keystroke, but is
corrected as soon as the word is completed. In the cur-
rent implementation, the end of each word is indicated with
a mouse button press. Another alternative is to assign a
chorded finger movement to represent a space character, or
a thumb movement if a camera with a wider field of view
is used. In practice, usability can be improved by display-
ing the three most probable words and allowing the user
to choose the correct one in very ambiguous cases. In ad-
dition, explicitly including the probability of misdetected
keystrokes in the observation model is expected to further
improve the accuracy of the system.

5.1.2 Input Speed

A typing speed of 14 words per minute was achieved on the
prototype system. The smoothing filter described in sec-
tion 2.2.2 is one source of lag, introducing a delay of ap-
proximately three frames (0.1s) between a keystroke and its
detection. Missed keystrokes, which need to be retyped, are
another source of delay. In the current implementation, a
detected keypress is indicated by displaying the most likely
character on the screen. The absence of the tactile feed-
back is another possible limitation to input speed on virtual
keyboard and glove-based devices. Nevertheless, the input
speed for the reduced character set tested here is compara-
ble to other input methods for portable devices. Further-
more, the addition of acoustic feedback after each detected
keypress is expected to improve input speed. In [22], the in-
put speed and accuracy for several mobile phone text entry
methods is compared.

5.2 Pointer control

The speed and control of pointer movement were tested
qualitatively. The finger position assigned to pointer control
mode was an open hand as shown in figure 7 and was de-
tected consistently. In each frame, 20 corner features were
selected to be tracked. On average, 70% of the selected fea-
tures are matched from one frame to another. Accurate con-
trol can be achieved with smooth hand movements. How-
ever, rapid hand movements hinder accurate feature track-
ing, resulting in pointer position lag. In addition, feature
correspondence errors sometimes result in erratic pointer
motion. Several improvements can be made to improve
performance. For example, using more unique feature de-
scriptors will improve feature matching between frames. In
addition, while corner features are appropriate for tracking
in indoor environments, other feature descriptors are more
suitable for less structured outdoor environments. Inertial
measurements can also be used for ego-motion estimation,

as in [13]. Integrating vision and inertial sensor based meth-
ods can be used to further improve accuracy. An overview
of sensor fusion techniques for motion estimation is given
in [19].

6 Conclusions and Future Work

This paper describes a keystroke and pointer control
input device for mobile and wearable computers. Wrist
mounted cameras are portable and unobtrusive, and allow
rapid input using all fingers. Probabilistic character dis-
ambiguation allows non-chorded input, providing touch-
typists with a smooth transition from a traditional keyboard.
While input speed lags that possible with a standard key-
board, performance is comparable to other portable input
methods. In addition, integrated pointer control allows for
fast switching between typing and pointer control that is
appropriate for augmented reality systems. Moreover, the
hands do not have to be held in a specific position during
typing, so that input can be entered while the user is stand-
ing or walking with their hands at their sides.

Several improvements can be made to each element of
the system. For example, hand and finger recognition can
be made more robust by implementing adaptive skin color
classification. Work has been done to accurately detect
varying ranges of skin color and perform accurate skin color
extraction in all illumination conditions. Furthermore, con-
tour tracking algorithms using deformable templates or dy-
namic contours [7] could be applied to more accurately
track the edges of each finger. The Condensation (Condi-
tional Density Propagation) algorithm [8] is a probabilistic
algorithm that can be used to track contours in cluttered en-
vironments. Alternately, in [20], the circular Hough trans-
form is used to track fingertip position for a virtual drawing
application. Finally, fitting the observed hand contour to a
3D physical model of the hand would allow finger position
to be tracked in three dimensions.

Several improvements to pointer control are also possi-
ble. The feature tracking approach described in this pa-
per uses a two dimensional model of camera movement.
Structure-from-motion techniques can be used to extend
motion tracking to three dimensions. In [1], real-time
structure-from-motion is achieved by tracking corner fea-
tures and determining 3D position using a Kalman fil-
ter. Using more distinctive features rather than corners, as
in [11], could enable more accurate tracking, and smoother
pointer control. Inertial sensors such as accelerometers
could also be used to aid motion estimation.
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