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To remain competitive in the dynamic world of soft-
ware development, organizations must optimize the
use of their limited resources to deliver quality prod-
ucts on time and within budget. This requires preven-
tion of fault introduction and quick discovery and re-
pair of residual faults.
In this paper, a new model for predicting and iden-
tifying of faults in object-oriented software systems
is introduced. In particular, faults due to the use
of inheritance and polymorphism are considered as
they account for significant portion of faults in object-
oriented systems.
The proposed MASP model acts as a fault metric se-
lector that gathers relevant filtering metrics suitable
for specific fault types employing coarse-grained and
fine-grained metric selection algorithms. A fault pre-
dictor is subsequently established to identify the fault
type of individual fault classification.
It is concluded that the proposed model yields high
discrimination accuracy between faulty and fault-free
classes.

Keywords: software fault, predictive model, neural net-
works, fault metrics, fault prediction and identification

1. Introduction

Software reliability can be defined as the probability
of failure-free operation of a computer program execut-
ing in a specified environment for a specified time [19]. It
is often considered a software quality factor that can aid
in predicting the overall quality of a software system us-
ing standard predictive models. Predictive models of soft-
ware faults use historical and current development data
to make predictions about faultiness of software subsys-
tems/modules. Although software faults have been widely
studied in both procedural and object-oriented programs,
there are still many aspects of faults that remain unclear.
This is true especially for object-oriented software sys-

tems in which inheritance and polymorphism can cause a
number of anomalies and fault types [20]. Unfortunately,
existing techniques used to predict faults in procedural
software are not generally applicable in object-oriented
systems.

Some recent studies [5, 6, 9, 11, 13, 17, 21] report the
use of object-oriented metrics to predict fault-proneness
and number of faults by applying various statistical meth-
ods and neural network techniques. However, they gen-
erally stop at the problem of fault prediction without at-
tempting to further characterize the faults that are likely
to present in the system. In this paper, a new method
of fault prediction and fault type identification is intro-
duced. For the reasons mentioned earlier, faults due to
inheritance and polymorphism are of special interest in
this work.

The problem of predicting whether a software class is
faulty can be viewed as a binary classification problem
in which the class represents a data point with coordi-
nates described by object-oriented metrics and other pa-
rameters. The prediction of fault type in a faulty software
class is then considered as a clustering problem in which
each fault type is represented by a cluster prototype [8].
To solve the two problems, use of neural network tech-
niques [12] is proposed. The classification problem is ad-
dressed using a Multilayer Perceptron (MLP), while the
solution to clustering problem is derived based on Radial-
Basis Function Network (RBFN).

The paper is organized as follows. Section 2 pro-
vides background information on the problem area in-
cluding fault taxonomy, software metrics, and neural net-
work methods used in this study. Section 3 describes a
coarse-grained fault metric selector that serves as fault-
prediction preprocessor. Besides the coarse-grained se-
lected fault metrics, additional relevant metrics are ex-
tracted by a fine-grained fault metric selector in Section 4.
Construction of the fault identification model employing
the fine-grained selected metrics and the results are also
presented. The results obtained from the model are fur-
ther discussed in Section 5. Some related works pertain-
ing to the proposed approach are also given in Section 6.

Vol.10 No.3, 2006 Journal of Advanced Computational Intelligence
and Intelligent Informatics

312



Mahaweerawat, A. et al.

Table 1. Fault and anomalies due to inheritance and poly-
morphism.

Acronym Fault/Anomaly
SDA State Definition Anomaly
SDIH State Definition Inconsistency
SDI State Definition Incorrectly
IISD Indirect Inconsistent State Definition
SVA State Visibility Anomaly

Table 2. Syntactic inheritance patterns.

Acronym Syntactic Pattern
ECE Extension method Calls another Extension method
ECI Extension method Calls Inherited methods
ECR Extension method Calls Refining method
EDIV Extension method Defines Inherited state Variable
RCE Refining method Calls Extension method
RCI Refining method Calls other Inherited method
RCR Refining method Calls another Refining method
RCOM Refining method Calls Overridden Method
RDIV Refining method Defines Inherited state Variable
RUIV Refining method Uses Inherited state Variable

Table 3. Software metrics from a software tool.

Software Metrics
AvgCyclomatic
AvgCyclomaticModified
AvgCyclomaticStrict
AvgLine
AvgLineCode Average line code
CountClassBase
CountClassCoupled (CBO)
CountClassDerived (NOC)
CountDeclClass
CountDeclInstanceMethod (NIM)
CountDeclInstanceVariable (NIV)
CountDeclInstanceVariablePrivate
CountDeclInstanceVariableProtected
CountDeclInstanceVariablePublic
CountDeclMethod (WMC)
CountDeclMethodAll (RFC)
CountDeclMethodFriend
CountDeclMethodPrivate
CountDeclMethodProtected
CountDeclMethodPublic
CountLine
CountLineCode
MaxCyclomatic
MaxCyclomaticModified
MaxCyclomaticStrict
MaxInheritanceTree (DIT)
PercentLackOfCohesion (LCOM)
Number of Parents(NOP)
Number of Direct Base classes(DirBase)
Number of Indirect Base Classes (IndBase)
Number of Descendants (NOD)

Finally, the main conclusion and direction of future work
are given in Section 7.

2. Background

2.1. Neural Networks

This study employs two neural network techniques as
the underlying mechanisms for fault prediction, namely,
Multilayer Perceptron (MLP) and Radial-Basis Function
Networks (RBFN). The former helps cluster input data
into appropriate fault categories, whereas the latter com-

Table 4. Fault/anomaly types identified by syntactic pat-
terns and parameters.

Pattern/ Fault Type
Parameter SDA SDIH SDI IISD SVA
ECE X
ECI X X
ECR X
EDIV X X X
RCE X X X
RCI X X X
RCR X X
RCOM X X
RDIV X X X
RUIV X
NMI X X X X
NME X X X X
NMR X X X X X
DepIV X
DiffOvrrI X
DiffDef X
NDTRAM X X
NDVRAM X X
NDTRM X X
NDVRM X X
OVrrMet X X
NTIMet X X
NVIMet X X
NTOVrrMet X X
NVOVrrMet X X
IdenVar X
ImRef X
IPriV X
RIpriV X

putes the fault types so obtained via curve-fitting approx-
imation. Their procedural details can be found in [12].

2.2. Fault Categories and Software Metrics
Inheritance and polymorphism provide many benefits

in creativity, efficiency, and reuse of object-oriented soft-
ware development. However, they can cause a number
of anomalies and faults [20]. This study focuses on five
fault types incurred by the use of polymorphism shown in
Table 1.

A number of parametric measurements are introduced
as faulty causes, i.e., number of appearances of syntactic
fault pattern [3], and syntactic and structural measures.
The metrics are summarized inTables 2, 3. Further de-
tails of each metric can be found in [1, 3, 7]. The paramet-
ric measurements are categorized according to the above
five fault types shown inTable 4.

Besides the number of appearances of the patterns and
software metrics described in [3, 7], additional parameters
are defined for this study as follows:

� Number of inherited methods (NMI): This param-
eter can be used with ECI, EDIV, RCI, RDIV, and
RUIV [3] patterns to detect SDA, SDI, SDIH, and
SVA faults.

� Number of extension methods (NME):This pa-
rameter can be used with ECE, ECI, ECR, EDIV, and
RCE [3] patterns to detect SDA, SDI, IISD, and SVA
faults.

� Number of refining methods (NMR): This parame-
ter can be used with ECR, RCE, RCI, RCR, RCOM,
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RDIV, and RUIV [3] patterns to detect SDA, SDI,
SDIH, IISD, and SVA faults.

� Number of methods dependent on the inherited
variable which is defined in the descendant class
(DepIV): This parameter can be used with ECE,
ECI, ECR, EDIV, and RCE [3] patterns to detect
faults of SDA type. If an extension method defines
a state variablev and there is another method that
depends onv, then an SDA exists.

� Number of portions that the inherited variable is
defined differently in the inherited method from
the overridden method in the indirect base class
(DiffOvrrI): This parameter can be used with the
RCI [3] pattern to detect faults of SDI type. If a re-
fining method calls an inherited methodi instead of
the overridden methodo andi defines the same state
variable as those in the overridden method but the
result of definition is different, then an SDI fault ap-
pears.

� Number of portions that the inherited variable
is defined differently from the ancestor (DiffDef):
This parameter can aid EDIV, RCE, RCR, RDIV, and
RCOM [3] patterns to detect an SDI fault. If an ex-
tension methode or a refining methodr defines an
inherited variable in the manner that is different from
the ancestor, then an SDI fault occurs. If a refining
method calls the extension methode or the refining
methodr, an SDI fault also appears.

Comparisons between state variables in the ancestor
class and those in the descendant class are as follows:

� Number of variable types defined in the ancestor
method which is refined in the descendant class
(NDTRAM)

� Number of variables defined in the ancestor
method which is refined in the descendant class
(NDVRAM)

� Number of variable types defined in the refining
method of the descendant class (NDTRM)

� Number of variables defined in the refining
method of the descendant class (NDVRM)

All four parameters above can be used with ECR, RCR,
RDIV, and RCOM [3] patterns to detect the SDA and SDI
faults. If a refining methodr does not define the same set
of state variables as in the ancestor class, an SDA fault
appears. An SDA fault also exists if an extension method
or another refining method calls the refining methodr.
Moreover, if the refining methodr calls an overridden
methodo and defines additional state variables not defined
by o, the SDA fault will be introduced.

If r defines the same set of state variables as overridden
methodo does but the definition is different, then an SDI
fault occurs.

� Number of overridden methods of the indirect
base class (OvrrMet): This parameter can help the
RCI [3] pattern detect the faults of SDA and SDI
types when the inherited methods are called instead
of the overridden methods.

Comparisons between state variables in the inherited
methods and those in the overridden methods are as fol-
lows:

� Number of variable types defined in the inherited
method which are called instead of the overridden
method (NTIMet)

� Number of variable types defined in the overrid-
den method of the indirect base class (NTOVr-
rMet)

� Number of variables defined in the inherited
method which is called instead of the overridden
method (NVIMet)

� Number of variables defined in the overridden
method of the indirect base class (NVOVrrMet)

All four parameters above can be used with the RCI
[3] pattern to detect the faults of SDA and SDI types. If
a refining methodr calls an inherited methodi instead of
an overridden methodo and the methodi does not define
the same set of state variables as in the methodo, then an
SDA fault exists.

However, if i defines the same set of state variables as
o does but the definition is different, an SDI fault appears.

� Number of identical name variables (IdenVar):
This parameter can be used with RDIV and RUIV [3]
patterns to detect an SDIH fault.

� Number of implicit references of the identical
name variable (ImRef): This parameter can be used
with RDIV and RUIV [3] patterns and the parameter
IdenVar to detect an SDIH fault. If there is a state
variablev whose name is identical to one that is in-
herited and that is defined by a refining method, an
SDIH fault exists. An SDIH fault will also occur if
a refining method usesv to define an inherited state
variable with the implicit reference.

� Number of called inherited methods that define or
use private variable (IPriV): This parameter can be
used with the RCI [3] pattern to detect an SVA fault.
If a refining methodr calls an inherited methodi to
modify a state variable which is declared private in
the indirect base class, an SVA fault is likely to occur.

� Number of refining methods in the ancestor
class that are inherited to the descendant class
(RIpriV): This parameter can be used with the
RCI [3] pattern and the parameter IPriV to detect an
SVA fault. If a refining methodr calls an inherited
methodi to modify a state variable which is declared
private in an indirect base class and the method of
the direct base class which inheritedi is refined and
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Coarse-grained
metric selection

Faultiness prediction:
MLP with back-propagation

learning algorithm

Fault type identification:
Radial-Basis Function

Network

Relevant metrics

Irrelevant
metrics

Faulty classes

Fault-free
classes

Faultiness prediction

Fault type identification

Fault types

All metrics of both
faulty and fault-free classes

in the training set

Fine-grained
metric selection Relevant metrics

Irrelevant
metrics

Software classes

Fig. 1. Diagram of MASP fault identification model con-
struction.

not consistent with the original method in the indi-
rect base class, then an SVA fault appears.

2.3. Fault Analysis

In this study, a set of source code is examined to ana-
lyze faults that exist in software systems. Fault analysis
consists of two parts; faultiness prediction and fault type
identification.

A faultiness predictive model has been constructed
based on software characteristics to predict whether the
considered software is faulty or fault-free. A set of prede-
termined software metrics are used as the principal char-
acterization attributes of software, while neural network
techniques are applied to build the predictive model. In
our previous work [16], two faultiness predictive mod-
els were built based on eleven software metrics with the
help of multilayer perceptron (MLP) for the first model
and Radial-basis function network (RBFN) for the second
model. The results yielded prediction accuracy of 60%
and 83%, respectively. Since some software metrics used
in prior work are suitable only for structured software, ad-
ditional object-oriented software metrics have been em-
ployed. A fault identification model named MASP is
introduced. The MASP model consists of two stages,
namely, faultiness prediction (or coarse-grained) stage
and fault type identification (or fine-grained) stage. This
is depicted inFig.1.

In the faultiness prediction stage, a coarse-grained met-
ric selection algorithm is proposed to extract the vital fault
metrics that affect fault proneness. A faultiness predictive
model is applied to extract faulty classes using multilayer
perceptron with back-propagation learning algorithm.

Since the metrics selected by coarse-grained method do
not contain adequate trace provisions for identifying fault
type from the faulty classes so obtained, a fine-grained
metric selection algorithm is presented to enhance trace
identification capability with the help of other relevant
metrics. A fault type identification model is constructed
using radial-basis function network (RBFN). The MASP
approach identifies not only fault type residing in the

Table 5. Training and test data sets.

Fault A B C
Category training test training test training test
Fault-free 400 100 273 75 284 87
SDA 80 20 95 33 98 22
SDIH 80 20 116 14 91 21
SDI 80 20 91 31 126 25
IISD 80 20 102 27 112 19
SVA 80 20 123 20 89 26
Total 800 200 800 200 800 200

faulty classes, but also determines the degree of various
impacts on which each fault type has. This is carried out
by means of an algorithm which considers the metrics as-
sociating with the hidden nodes in the hidden layer of the
model and their corresponding weights. Details on how
the algorithm works will be elucidated in the sections that
follow.

3. Faultiness Prediction – A Coarse-Grained
Approach

The experiments have been carried out using 3,000
C++ classes from different sources: complete applica-
tions, individual algorithms, sample programs, and vari-
ous other sources on the Internet. The classes were writ-
ten by different developers. The size of the classes varies
between 100 and 500 lines of code. Such composition of
experimental data provides a good mixture necessary for
obtaining general predictive models.

Of all the 3,000 classes, half of them were representa-
tives of faulty samples and the other half were fault-free
samples. The faulty samples were divided into five groups
of 300 classes, having each fault type code listed inTa-
ble 1 inserted according to syntactic patterns in [3]. All
faulty and fault-free samples were measured with 60 soft-
ware metrics and fault parameters given in [1, 3].

The data were normalized to 0 and 1, and randomly
grouped into three sets, namely, A, B, and C. Each group
was divided into an 800-class training set and a 200-class
test set.Table 5 shows the number of software classes in
each fault type per set.

All 60 software metrics and fault parameters were ap-
plied to the experimental data. However, not all software
metrics and fault parameters contributed to faultiness of
the software classes. Therefore, it was necessary to select
only the relevant metrics and fault parameters in order to
filter out the irrelevant ones. Some researches [5, 6, 9, 10,
22] employed univariate logistic regression analysis and
Principal Component Analysis (PCA) as a preprocessing
scheme to extract only suitable object-oriented metrics for
predictive model construction. Because the statistical and
mathematical methods are black box which cannot ex-
plain the reasoning behind the metric selection [14], a new
algorithm to select the relevant attributes is proposed. In
the following discussion, both software metrics and fault
parameters are simply referred to as metrics.
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1. Separate the training set into two sets, namely, fault-
free set for fault-free classes and faulty set for faulty
classes.

2. In the fault-free set, calculate the average value of
each metric.

AvgNFMi �
∑p

j�1 x j
i

p

whereAvgNFMi is the average value of metrici in
the fault-free set,i � �1�2� � � � �m�, m is the number
of metrics,j� �1�2� � � � � p�, p is the number of fault-
free classes in the fault-free set, andx j

i is the value of
metric i of the fault-free classj.

3. In the faulty set, calculate the average value of each
metric.

AvgFT Mi �
∑q

k�1 yk
i

q

whereAvgFT Mi is the average value of metrici in
the faulty set,i � �1�2� � � � �m�, m is the number of
metrics,k � �1�2� � � � �q�, q is the number of faulty
classes in the faulty set, andyk

i is the value of metric
i of the faulty classk.

4. Calculate the relative difference of the average value
of each metric between the fault-free and faulty sets.

Di f f AvgMi �
�AvgNFMi�AvgFT Mi�

�AvgNFMi�AvgFT Mi�
�100

whereDi f f AvgMi is the relative difference of the
average value of metrici between the fault-free and
faulty sets.

5. Select the metrics having the average relative differ-
ence above the selected threshold.

Applying the above selection algorithm using the
threshold value of 50 to the training set A, eleven metrics
were obtained.

There are feature selection techniques used in [5, 6,
9, 10, 22], i.e., univariate logistic regression, multivari-
ate logistic regression, Principal Component Analysis
(PCA), and an unsupervised method presented in [18].
We compared the performance of our model with other
approaches. Different techniques were applied to find a
subset of proper metrics, including the above pre-selected
metrics, for faultiness predictive model using MLP with
back-propagation learning algorithm based on the above
pre-selected metrics. The objective of the models is to
correctly classify the data points into fault-free and fault
groups. The structure of each faultiness predictive model
consists of input nodes with respect to the selected met-
rics in the input layer, 15 hidden nodes in the hidden layer,
and 1 output node in the output layer.

The expected output value computed from the output
node of each model would be zero for the fault-free class

Table 6. Results from faultiness predictive models based
on sets of metrics obtained from different metric selection
techniques.

Metric selection technique Test set
A B C

Univariate logistic regression 90.00% 87.20% 88.00%
Multivariate logistic regression 92.50% 88.10% 88.20%
Principal component analysis 77.50% 74.60% 72.50%

An unsupervised method [Mitra] 68.50% 70.40% 67.20%
Random selection 76.00% 75.10% 74.40%

The proposed coarse-grained algorithm95.50% 94.90% 95.40%

Table 7. The selected metrics obtained from applying uni-
variate logistic regression, multivariate logistic regression,
and the proposed coarse-grained algorithm to training set A.

Univariate Multivariate The proposed coarse-grained
logistic logistic algorithm
regression regression
ImRef NOD NOC
DiffDef ImRef CountDeclInstanceVariableProtected
DiffOVrrI DiffDef CountDeclMethodProtected
RIpriV DepIV NOD

RIpriV ECE
ECR
ImRef
DiffDeff
DiffOVrrI
DepIV
RIpriV

and one for the faulty class. The actual output was car-
ried out during the training process. Each output value
was computed from sigmoid function in batch mode us-
ing a 0.35 learning rate value, along with the adjusted
weights (in accordance with the delta rule without a mo-
mentum term), and input values. The training process ter-
minated when the error was less than 0.001 or reached
1000 epoches. The output values so obtained ranging be-
tween 0 and 1 were indecisive for data classification. Set-
ting an acceptance ratio at 0.55, a data point could be clas-
sified as a faulty class if the output of MLP was greater
than this value. Otherwise, it would be a fault-free class.
The comparative results of the experiments are depicted
in Table 6. Each faultiness predictive model was built
from the training set A and re-applied to the test set A,
data set B and C. The experiments were carried out on
Matlab V6.0. Three models applying the sets of metrics
obtained from univariate logistic regression, multivariate
logistic regression, and the proposed coarse-grained algo-
rithm are shown inTable 7.

The highest correctness percentage was accomplished
by our model and was subsequently evaluated through
some measurement criteria [15] as follows:

� Type 1 error (T1): This error occurs when a faulty
class is classified as fault-free; T1 = 2.81%

� Type 2 error (T2): This error occurs when a fault-
free class is classified as faulty; T2 = 2%

� Quality achieved (C): If all faulty classes are prop-
erly classified, defects will be removed by extra ver-
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ification; C = 95.51%

� Inspection (I): Inspection measures the overall veri-
fication cost by considering the percentage of classes
that should be verified; I = 61.95%

� Waste Inspection (WI): Waste inspection is the per-
centage of classes that do not contain faults but
are verified because they have been classified incor-
rectly; WI = 3.23%

4. Fault Type Identification – A Fine-Grained
Approach

A fine-grained metric selection algorithm has been pro-
posed. The algorithm is based on the relative difference
between the value of each metric applied to faulty and
fault-free classes in the training set.

1. Set initial weight of each metric to accentuate its im-
portance.

W �t�
i � 0

whereW �t�
i is the weight value of metrici at iteration

t,i � �1�2� � � � �m�, m is the number of metrics, andt
is the iteration number.

2. Establish a pair of fault-free and faulty classes from
the training set, each of which consists of the same
corresponding set of metrics.

X � �x1�x2� � � � �xm� �Y � �y1�y2� � � � �ym�

whereX is a faulty class consisting of m metrics,Y
is a fault-free class consisting of m metrics,xi is the
value of metrici of the faulty class, andyi is the value
of metrici of the fault-free class.

3. Calculate the relative difference of each metric pair
from step 2.

Di �
�xi� yi�

�xi� yi�
�100

whereDi is the relative difference of metrici among
their respective classes,xi is the value of metrici
of the faulty class,yi is the value of metrici of the
fault-free class. This will prevent metric intermixing
among their corresponding applicable domains.

4. Adjust the weight value of each metric according to
the following conditions:

IF Di � β T HEN W �t�
i �W �t�1�

i �1

ELSE W �t�
i �W �t�1�

i �1

whereβ � 50 (in percentage) is a predefined thresh-
old value.

Table 8. The combined filtered metrics.

Metrics from coarse-grained Metrics from fine-grained
algorithm algorithm
NOC RUIV
CountDeclInstanceVariableProtected NDTRAM
CountDeclMethodProtected NDVRM
NOD CountDeclInstanceVariablePublic
ECE CountDeclMethodPrivate
ECR OVrrMet
ImRef CountDeclInstanceVariablePrivate
DiffDef NDVRAM
DiffOvrrI ECI
DepIV RCOM
RIpriV NDTRM

CBO
IndBase
IdenVar
EDIV
NTIMet
RCE
NVIMet
RCI
NTOVrrMet
RCR
NVOVrrMet
RDIV
IPriV

5. Repeat step 2 through step 4 until all fault-free
classes match with all faulty classes of the training
set.

6. Consider the weight value of each metric, replacing
negative values with zero

IF Wi � 0 T HEN Wi � 0

7. Normalize all weight values

Wi �
Wi�min

max�min

wheremax andmin are the maximum and minimum
weight values, respectively.

8. Select the metrics with weight values above the se-
lected threshold.

After applying the selection algorithm using the thresh-
old value of 0.5, thirty-four relevant metrics were obtained
from set A, B, and C. The metric union of all three sets
yielded a combined 35 metrics, where all metrics from set
A and C were identical, but B differed by only one. Note
in Table 8that the thirty-five fine-grained selected metrics
were composed of the same eleven metrics obtained from
the coarse-grained algorithm in Section 3 and the newly
added twenty-four metrics.

The construction of fault type identification model is
based on RBFN technique and the fine-grained selected
metrics as mentioned earlier. The model consists of 35
input nodes in the input layer, a number of hidden nodes
in the hidden layer (this number is determined during the
training process), and five output nodes in the output layer
that form an output vector. The output vector denotes 
the type of fault in binary format as ‘10000’, ‘01000’,
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Table 9. Results from applying the fault type predictive
model to predict faulty classes.

Fault Predicted Fault Type
Category SDA SDIH SDI IISD SVA
SDA 180 3 17 3 3
SDIH 5 246 6 2 3
SDI 20 6 261 4 2
IISD 13 4 11 243 9
SVA 5 2 2 5 264
Fault-Free 40 0 0 0 4

‘00100’, ‘00010’, and ‘00001’, representing SDIH, IISD,
SVA, SDA, and SDI faults, respectively.

During the experiment, training data were used to gen-
erate the weights between the hidden layer and the output
layer. If the network yielded low accuracy, the number of
hidden nodes would be incremented by one. This restruc-
turing by node-plus-one progression continued until the
desired accuracy was acquired or the number of hidden
nodes reached the number of training data points.

Based on the above procedures, the proposed model
yielded a 91.38% prediction accuracy on faulty classes
of test data from set A, all data from data sets B and C.
The model was reapplied to the predicted faulty classes
obtained from the faultiness predictive model and yielded
the prediction accuracy of 87.60%. The reason behind the
lower accuracy was that some fault-free classes were in-
correctly classified as faulty classes by the faultiness pre-
dictive model in Section 4. The results shown inTable 9
relate the actual number of each fault type and classifica-
tion. Note that the effects of erroneous prediction become
apparent as the fault-free classes are inferred to have SDA
and SVA faults. Such caveats will impede future identifi-
cation of the occurrence of these two fault types.

From the structure of the model, weights are assigned
to the hidden layer and the output layer of fault type
model. The weight value of each hidden node designates
on which output node it would have an effect. The max-
imum weight value obtained from all hidden nodes that
exert on a given output node indicates the dominance of
the hidden node.

To explore which metrics dominate the fault type of a
given hidden node that represents all 35 metrics, an algo-
rithm is proposed as follows:

1. Choose a fault type to find a set of representative
metrics.

2. Among the hidden nodes, find the one that has the
most effect on fault type according to the weight val-
ues between the hidden nodes and output nodes.

3. Identify the set of classes from the training data
where the selected fault is originated.

4. For each metric, calculate the difference between the
metric values of a training class and a hidden node
(each of which contains 35 metrics).

V � j�k�
i �

�
�
�ck

i �h j
i

�
�
�

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
0

0.2

0.4

0.6

0.8

1
IISD

Metric

T
o

ta
l 
d

if
fe

r
e

n
c
e

 v
a

lu
e

Fig. 2. The total difference of each metric between hidden
nodes and training classes having IISD fault.
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Fig. 3. The total difference of each metric between hidden
nodes and training classes having SDA fault.

whereV � j�k�
i is the difference of metrici among train-

ing classk and the hidden nodej, ck
i is the value of

metric i of classk, andh j
i is the value of metrici of

hidden nodej.

5. Repeat step 4 for the selected fault type until all
classes and hidden nodes are considered.

6. For each fault type, calculate the total difference of
each metric value from Step 5.

TotVi �
m

∑
j�1

n

∑
k�1

V � j�k�
i

whereTotVi is the total difference of metrici among
all classes and hidden nodes,V � j�k�

i is the difference
of metric i among training classk and hidden node
j, m is the number of hidden nodes for the selected
fault type, andn is the number of training classes for
the selected fault type.

7. Normalize all total difference values by

TotVi �
TotVi�min
max�min

wheremax andmin are the maximum and minimum
total difference values, respectively.
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Fig. 4. The total difference of all metrics between hidden
nodes and training classes for each fault type.

8. Repeat Steps 1-7 above until all fault types are con-
sidered.

Figures 2and3 show the effects of IISD and SDA met-
rics have on particular fault types. The zero total differ-
ence value means that the corresponding metrics of that
training class and hidden node are the same and thus has
no effect on the fault type. On the other hand, if the total
difference metric between the training classes and the hid-
den nodes is high, that metric will likely contribute to the
fault prediction of the software. As depicted inFig.3, the
29th metric represents the effect of SDA fault due to the
number of variable types defined in the inherited method
being called instead of the overridden method (NTIMet).
In contrast,Fig.2 shows that this metric has less effect on
IISD fault.

Fig.4 demonstrates how important all metrics are in
each fault type. There are many metrics affecting SDA
fault with high scale of the total difference value, while
other metrics affect IISD and SVA faults at low scale of
the total difference value. The importance of each met-
ric for all fault types is shown inFig.5. Notice that the
18th metric shows the highest effect of number of appear-
ances of the pattern refining method (RDIV) [3] has on all
fault types, while the 6th metric depicts less effect of the
number of private methods declared in a class (CountDe-
clMethodPrivate) [1] has on every fault type.

5. Discussion

The proposed coarse-grained software metric attribute
selection algorithms of MASP proved to be effective in
determining the significance of each metric and charac-
terization of software faultiness. Based on the selected
metrics and MLP with back-propagation learning algo-
rithm, the proposed approach is able to predict faultiness
of a class with more than 90% accuracy. According to the
evaluation criteria, the faulty classes can be detected in
95.51% of test cases, the inspection cost for verification
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Fig. 5. The total difference of all metrics between hidden
nodes and training classes for all fault types.

Table 10. Results of fault type identification model obtained
from the coarse-grained and fine-grained selected metric
sets.

Test set Metric set
Coarse-grained selected metrics Fine-grained selected metrics
faulty classes predicted faulty classes predicted

faulty classes faulty classes
A 87.00% 81.55% 92.00% 86.41%
B 88.80% 85.60% 90.59% 89.20%
C 83.46% 80.19% 91.09% 86.15%

is 61.95%, and the waste cost is 3.23%. Only 2.81% of
faulty classes are undetected.

The proposed MASP’s coarse-grained metric selection
demonstrates slight advantages of fault-metric classifica-
tion over conventional statistical and PCA approaches.
However, only the coarse-grained selected fault metrics
were not enough for fault type identification, a fine-
grained metric selection algorithm was proposed to fur-
ther extract additional relevant metrics that affect the cor-
responding fault type. Such preprocessing ground work
establishes an effective filtering mechanism that permits
higher accuracy of subsequent fault type identification as
depicted inTable 10. The fault type predictive model ap-
plying the coarse-grained selected metrics yields an aver-
age of 85% and 82% accuracy on faulty classes and pre-
dicted faulty classes, respectively. In contrast, the predic-
tive model obtained from the fine-grained metrics yields
an average of 91% and 87% accuracy on faulty classes
and predicted faulty classes, respectively. Moreover, the
primary cause of the contributing fault types can also be
identified by MASP’s pair-wise metric comparison algo-
rithm in Section 4. In so doing, this two-stage fault pre-
diction technique offers not only high accuracy fault pre-
diction outcomes, but also the corresponding fault types
that contribute to the designated faults. We envision that
some forms of fine grained metric preprocessing for each
particular fault type should be carried out to alleviate the
aforementioned caveats (as shown inTables 9and10) and
the costs incurred.
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6. Related Works

Toshihiro Kamiya et al. [13] proposed a method
to estimate the fault-proneness of the class in the
early phase using several complexity metrics for object-
oriented software and multivariate logistic regression
analysis. They introduced four checkpoints into the anal-
ysis/design/implementation phase, and estimate the fault-
prone classes using the applicable metrics at each check-
point.

In [6], a fault-proneness prediction model was built
based on a set of object-oriented measures using data col-
lected from a mid-size Java system employing logistic re-
gression analysis.

P. Kokol et al. [14] introduced some methods for re-
liability prediction based on software metrics, presented
the results using these methods with a large database of
modules in C language. The results and methods were
compared. They found that statistical and mathematical
methods accurately predicted the reliability of software
modules, where black box methods could not explain the
reasons behind the prediction.

In [4], neural networks were proposed as an alterna-
tive technique to build software reliability growth models.
A comparison between regression parametric models and
neural network models was carried out and concluded that
neural networks were able to provide models with small
Sum Square Error (SSE) than the regression model in all
considered cases.

Mie Mie Thet Thwin and Tong-Seng Quah [21] pre-
sented the application of neural networks for predict-
ing number of faults in three industrial real-time systems
based on object-oriented design metrics. Ward Network
which is a backpropagation network was applied to con-
struct a neural network model. They concluded that neural
network model could predict the number of faults more
accurately than multiple regression model for software
engineering data.

Khaled El Emam et al. [9] employed univariate logistic
regression analysis for selecting some object-oriented de-
sign metrics. The proper metrics were applied with mul-
tivariate logistic analysis to construct a model for predict-
ing which classes in a future release of a commercial Java
application would be faulty.

Lionel C. Briand et al. [5] empirically explored the re-
lationships between existing object-oriented coupling, co-
hesion, inheritance measures, and the probability of fault
detection in system classes during testing. Principal com-
ponent analysis and logistic regression were applied to se-
lect the proper metrics and built a prediction model.

D. Glasberg et al. [11] performed empirical study with
the data from a commercial Java application using logis-
tic regression technique. They found that Depth of Inheri-
tance Tree (DIT) is a good measure of familiarity and has
a quadratic relationship with fault-proneness.

Yida Mao, H.A. Sahroui, and Hakim Lounis [17] pre-
sented an experiment to verify three hypotheses about the
impact of three internal characteristics (inheritance, cou-
pling, and complexity) of object-oriented applications on

reusability. The verification was done through a machine-
learning approach and the experimental results showed
that the selected metrics could predict with high level of
accuracy on potentially reusable classes.

Ping Yu and Tarja Syst¨a [22] empirically validated a set
of object-oriented metrics in terms of their usefulness in
predicting fault-proneness. Eight hypotheses on the cor-
relations of the metrics with fault-proneness were given
and tested on a system written in Java. Validation was
statistically carried out using regression analysis and dis-
criminant analysis.

F. Fioravanti and P. Nesi [10] analyzed more than 200
different object-oriented metrics extracted from the liter-
ature with the aim of identifying suitable models for de-
tection of fault-proneness of classes. The work had been
focused on identifying models that could detect as many
faulty classes as possible and, at the same time, models
that were based on a manageable small set of metrics.
To reach their goal, principal component analysis was ap-
plied to find the subset of metrics and multivariate logistic
regression analysis to construct the models.

Besides the prediction of fault-proneness in object-
oriented software, fault type is also detected in [2]. Roger
T. Alexander et al. defined a set of experiments, encom-
passing relative effectiveness of several coupling-based
OO testing criteria and branch coverage. All OO testing
criteria were more effective at detecting faults due to the
use of inheritance and polymorphism than branch cover-
age.

7. Conclusion

The application of neural networks in predicting soft-
ware faults requires enormous amounts of data. Analyz-
ing the data is a major undertaking that must be carried
out with the help of proper models. This study proposes
a two-stage fault prediction model called MASP model.
The first stage involves coarse-grained metric selection
and faultiness prediction. The next stage performs fault
identification by means of RBFN to categorize the faults
according to several defined fault types based on the fine-
grained selected metrics.

Some approaches have been explored to enhance the
predictive model. The first possibility is to add more pa-
rameters. However, it is very difficult to find a proper
set of parameters that can represent the characteristics of
each fault type. Second, proper data and metrics classifi-
cation techniques (preprocessing) enhance not only the ef-
ficiency of the training process, but also the performance
of the predictive model in terms of precision. Accurate
predictions obtained from such a good reliability model
eventually lead to higher efficiency of software process
and quality of resulting software products.
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