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Abstract: Software measurements provide developers and software managers with
information on various aspects of software systems, such as effectiveness, function-
ality, maintainability, or the effort and cost needed to develop a software system.
Based on collected data, models capturing some aspects of software development
process can be constructed. A good model should allow software professionals to
not only evaluate current or completed projects but also predict future projects
with an acceptable degree of accuracy.

Artificial neural networks employ a parallel distributed processing paradigm for
learning of system and data behavior. Some network models, such as multilayer
perceptrons, can be used to build models with universal approximation capabilities.
This paper describes an application in which neural networks are used to capture
the behavior of several sets of software development related data. The goal of the
experiment is to gain an insight into the modeling of software data, and to evaluate
the quality of available data sets and some existing conventional models.
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1. Introduction

Statistics illustrate current inability of software professionals to estimate the effort
and cost of developing software products despite many existing methods of software
cost modelling [22]. The results of model based estimations are still overshadowed
by the estimates provided by human experts [18]. At the same time the prediction
of effort to be spent on a software project is the variable most sought by project
managers [10], and the variable needed throughout software lifecycle.

There have been more than three decades of active research looking for a model
or function that relates effort to the size of software projects. This resulted in the
development of numerous parametric models of software cost estimation such as
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SLIM [19], Function Point Analysis [1], COCOMO [4], COCOMO 2.0 [5], and oth-
ers. More recently, there have been attempts to construct non-parametric models
using such techniques as neural networks [6], genetic programming [10], or case-
based reasoning [15]. However, in general, these methods do not show a signifi-
cant improvement in prediction accuracy, especially when applied across different
projects and organizations.

To address the issue of accuracy and to obtain a general cost estimation model,
large number of consistent data sets would have to be investigated [7]. The ques-
tion is whether a large number of consistent data is available. Keeping written
documentation, including project data, is a characteristics of mature software or-
ganizations [17]. However, only about one fifth of all software organizations have
achieved high maturity [21], and organizations that collect data are rarely willing
to share them [6].

In this paper, neural networks are used to gain insight into several available cost
data sets (some of which were used to construct existing cost estimation models, e.g.
COCOMO) and to capture the essence of the existing parametric models. In other
words, neural networks are exploited in quite different roles than in some of the
studies mentioned above, e.g. [6]. Although they are trained to provide functional
approximation of available cost data, cost estimation is not the purpose for which
they are built. Rather, properties of the data sets under study and characteristics
of selected parametric estimation models are inferred using a set of neural network
based experiments.

The paper is organized in 5 sections. Section 2 provides a brief overview of
software cost estimation and neural networks. In Section 3, the experimental setup
is described along with the particular data sets used in the experiments. Results
of the experiments are described in full and analyzed in Section 4. Section 5 builds
on the results and proceeds with a comparative study of two conventional models
against a neural network-based model. Finally, Section 6 provides main conclusions
and plans for future work.

2. Background

2.1 Software cost estimation

Cost and/or effort estimates for software projects are needed at many stages of the
software lifecycle: preliminary estimates to determine the feasibility of a project,
detailed estimates to assist with project planning, etc. The actual effort is also
compared with estimated effort to reallocate resources as necessary throughout the
project.

A sophisticated model of software development costs and effort takes the form of
a relationship between the projected product size or required product functionality,
and the development cost/effort. In addition, various productivity factors should
be considered to further refine the model’s prediction capabilities. Besides provid-
ing the estimation capabilities, such a model would provide a better understanding
of factors affecting cost and, consequently, alleviate current software development
inefficiencies by revealing directions to maximize productivity [7]. Hemstra [13] de-
scribes 29 software cost models introduced since 1966. Despite the ongoing efforts,
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there is not a single model that would provide sufficient accuracy of estimates over
a wide range of software projects and development organizations.

In general, software cost models predict amount of effort, E, necessary to con-
struct a software system, as a function of the projected size, S, of the system, and a
set of productivity factors, c, such as characteristics of the system to be developed,
development process, personnel, etc.

E = f(S, c). (1)

Traditionally, cost models have been developed using regression analysis of
existing software production data. This approach requires availability of large
amounts of consistent data on completed software projects including the actual
values of product size and development effort, preferably complemented by a quan-
tified description of circumstances of the development process.

Although most researchers and practitioners agree that size is the primary de-
terminant of effort, the exact relationship between size and effort is unclear [11].
Empirical studies usually express effort as a function of size, S, with an exponential
factor, b, and a multiplicative term, a,

E = aSb, (2)

however, the values of a and b vary for different models [4]. Correct structure of
the model remains unclear and existing models do not achieve acceptable results
when applied to data other than the data they were derived from [14].

A typical representative of parametric models constructed using regression anal-
ysis is the COnstructive COst MOdel (COCOMO) derived using data from a set
of 63 projects. It is a relatively well documented and straightforward model based
on inputs relating to the size of the system and a number of cost drivers that
are believed to affect productivity in a log-linear fashion. The original COCOMO
model was first published in 1981 [4], and then refined to its current version CO-
COMO 2.0 [5]. The main focus in this model is on considering the influence of
cost drivers on the development effort. The values of these drivers must be first
assigned/estimated along with the projected overall size of the software project or
module.

The COCOMO suite is a collection of three models providing estimates with
different accuracy and detail: basic, intermediate and advanced. The individual
models differ in values of constants a and b. Details of this model, including the
numerical values of the constants, can be found in [4], [5].

2.2 Neural Networks

Neural networks are parallel distributed information processing structures [12],
typically consisting of layers of uniform processing elements called neurons. The
neurons and layers are connected according to a specific architecture. Fig. 1 shows
a simple architecture known as a multilayer perceptron (MLP). The number of
input neurons, n, in the input layer is equal to the dimension of input vector, x.
The number of output neurons, m, in the output layer is equal to the dimension of
the output vector y. There is always at least one hidden layer with k neurons.
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It has been shown [2], [9] that an MLP with one hidden layer is capable of ap-
proximating any continuous nonlinear mapping with an arbitrary precision. This
makes MLP networks well-suited for a very broad class of nonlinear approximations
and mappings. To approximate a mapping, an appropriate network architecture
must be chosen while weights of the connections are set by a learning process. Al-
though there are theoretical bounds for the number of hidden neurons, the optimal
architecture is usually found experimentally.

It is also possible to perform this induction in the opposite direction: to interpret
a network architecture in terms of properties of the mapping it approximates. The
number of neurons in the hidden layer needed to realize a mapping represents
the number of nonlinear terms necessary to describe the mapping. Therefore, it
corresponds to the degree of nonlinearity of the relationship. Residual error after
the training can also be used to evaluate the quality of the data – the lower the
residual error, the higher the degree of consistency in the data.
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Fig. 1 Multilayer perceptron with m-k-n architecture.

3. Experiment Design

A series of experiments have been designed in order to gain an insight into the
character of data used to build software cost models and the nature of the models
themselves.

3.1 Cost data

Extensive and reliable data on software cost is very scarce in the software engineer-
ing research community. The data sets used in the experiments have been collected
from other publications and their full contents can be found in the cited works [4],
[8]. There have been six data sets collected in the period from late 1970s to 2001,
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containing data on 161 software projects. Most of the projects are relatively small
in size (80% of the projects are under 100,000 lines of code). A general description
of all data sets is given in Tab. I.

Label Name Number of Smin Smax

projects [kLOC] [kLOC]
1 Belady 33 4.74 712.36
2 Cocomo 2.0 15 1.90 966.00
3 Cocomo 81 63 9.10 134.47
4 NASA 18 5.00 138.30
5 US Army 15 49.80 450.00
6 Yourdon 17 7.10 132.20

Tab. I Data sets used in experiments (Smin and Smax indicate the size of the
smallest and largest project within a data set, respectively).

3.2 The Experiments

All neural networks used in the experiments were fully connected, feed-forward,
MLP networks with 2 and 3 layers corresponding to Fig. 1 with one and two hidden
layers of neurons with sigmoidal activations functions. Simple backpropagation was
used as the training algorithm, with parameters of 0.001 for the maximum training
error (mean square error, MSE) and a learning rate of 0.3. The input and output
of the networks were the size and cost to develop a software system, respectively.
The size/cost data were normalized to establish a point of reference necessary to
compare the results. The experiments can be divided into five groups described
below.

Experiment 1 was conducted on each of the six data sets to determine the optimal
number of nodes for the hidden layer of a 1-N -1 network trained to approximate
each data set. Mean square error was used as the evaluation mechanism for the
network configurations. Topologies containing between 2 and 65 hidden layer nodes
were evaluated for each data set, which generated 6 lists of MSE values. The
experiment was run five times and a simple mean of those results was used to
pick the optimal topologies. A topology of 1-1-1 was found in early testing not to
converge sufficiently for inclusion in this evaluation.

Experiment 2 used mean square error as the error measure. It performed leave-
one-out cross-validation to determine the unbiased generalization error of each of
the six data sets used to train a neural network of arbitrary configuration. The
arbitrarily configuration used was a network with a 1-10-1 topology. Five iterations
of the experiment were run, and the obtained values were then averaged for the
final results.

Experiment 3 was a cross-validation experiment conducted with all six data
sets. This experiment determined which data set displays the lowest generalization
error and thus indicated which data set would be the most suitable for use in
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constructing a general model. The experiment was conducted with the optimal
two-layer networks found in Experiment 1 and with three-layer networks of an
arbitrarily chosen topology of 1-10-10-1. The experiment was performed as follows:
each data set was used individually to train a network, and the trained network
was then tested with all six data sets during which MSE values were collected. This
procedure was then repeated for all six data sets and for both two- and three-layer
networks. The results are two 6×6 matrices of MSE values, one for two-layer and
one for three-layer networks. As with the above two experiments, five runs were
performed and the values averaged for the results.

Experiment 4 provided transfer function plots obtained from optimal 1-N -1 net-
works versus those obtained from a 1-10-10-1 network. Networks of both topologies
were trained for each of the six data sets. A number of values falling between the
minima and maxima of the training sets were then provided as inputs to the net-
works to generate the data for the transfer function plots. The resulting plots were
then used to qualitatively evaluate performance of the networks in approximating
the data.

Experiment 5 took into account the intermediate COCOMO model [5] including
the information on development mode, type of application and all effort adjustment
factors. The goal of this experiment was to find an optimal architecture of network
to model the entire COCOMO data set. The experiment started with an arbitrarily
chosen topology 18-10-1. It was expected that the number of hidden layers and
nodes would have to be increased or decreased to achieve the optimal performance.

4. Result Analysis

The results from Experiment 1, to be used in Experiments 3 and 4, are summarized
in Tab. II. A sizable variation in the number of optimal hidden nodes was expected.
Correctness of this assumption can be confirmed in the table. The higher the
optimal number of hidden nodes, the more nonlinearities present in the data set.
And, the higher the average MSE, the more inconsitencies among the data. The
data set 4 (NASA) requires a moderate number of hidden nodes to achieve the
best performance in terms of an average error (an order of magnitude lower than
the second lowest MSE). Thus the NASA data set is quite consistent and describes
relationship between the size and effort with a moderate nonlinearity. This data
set also provides a reasonable coverage of the size range as seen in Tab. I.

On the other hand, data set 3 (COCOMO 81) shows the highest MSE among
all data sets. The low number of optimal hidden nodes for this data set is due to
the fact that the degree of inconsistency does not allow successful training of any
reasonably-sized two-layer MLP network, and the obtained “optimal” number of
hidden nodes is accidental.

The outcome of Experiment 2 can be used to infer the degree of inconsistency
within a data set: the higher the average error, the more inconsistent the data.
The results obtained in this experiment, summarized in Tab. III, confirm that data
set 4 achieved an order of magnitude smaller MSE than the second best data set.
The most inconsistent data set is set 6 (Yourdon) with the average MSE two orders
of magnitude higher than the best case.
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Data set kopt Avg. MSE
1 9 1.06039
2 33 0.51901
3 4 1.32412
4 22 0.07119
5 41 0.25638
6 18 0.24958

Tab. II Optimal number of hidden nodes.

Data set Avg. MSE
1 0.0341766
2 0.0496576
3 0.0157605
4 0.0070931
5 0.0892731
6 0.1088250

Tab. III Leave-one-out Cross-Validation training/testing error.

The results of Experiment 3 can be used to evaluate the generality of the data
included in a data set, i.e. the ability of a neural network trained with the data to
successfully predict the effort of projects included in other data sets. The results
shown in Tabs. IV and V summarize the generality of each data set used to train
a two- and three-layer MLP, respectively. To allow a meaningful comparison of
the results, the MSE values have been averaged across the rows and cells with a
minimal average MSE set in bold type in both Tabs. IV and V.

Tab. V, summarizing the results of cross-validation performed on the three-layer
networks, confirms the overall favourable properties of data set 4: neural networks
trained using this data set exhibit the best generalization capabilities.

By comparing the results obtained with 2- vs. 3-layer neural networks (Tabs. IV
and V respectively), one can conclude that the degree of nonlinearity inherent in
the cost data requires the more complex 3-layer architecture to capture the data
with higher accuracy.

1 2 3 4 5 6 Avg.
1 0.033 0.308 0.027 0.311 0.385 0.588 0.275
2 0.033 0.737 0.027 0.159 0.645 0.564 0.361
3 0.043 0.166 0.027 0.201 0.172 0.202 0.135
4 0.043 0.519 0.040 0.099 0.538 0.571 0.302
5 0.031 0.524 0.025 0.305 0.510 0.592 0.331
6 0.048 0.146 0.033 0.157 0.121 0.180 0.114

Tab. IV 1-N -1 network cross-validation.
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1 2 3 4 5 6 Avg.
1 0.001 0.125 0.016 0.140 0.094 0.123 0.083
2 0.038 0.009 0.016 0.052 0.043 0.091 0.042
3 0.049 0.251 0.011 0.101 0.205 0.168 0.131
4 0.035 0.046 0.013 0.001 0.043 0.067 0.034
5 0.045 0.061 0.015 0.103 0.006 0.105 0.056
6 0.066 0.115 0.037 0.053 0.133 0.016 0.070

Tab. V 1-10-10-1 network cross-validation

Experiment 4 produced a series of graphs found in Fig. 2. The graphs illustrate
the data distribution in data sets 1–6 and corresponding transfer functions obtained
from 2- and 3-layer networks trained with given data sets. These graphs provide
valuable information on the degree of nonlinearity of the data and on the ability
of the studied network architectures to learn given data.

The results confirm the findings from previous experiments: The NASA data set
(Set 4) exhibits the smallest nonlinearity and high consistency. Both 2- and 3-layer
neural networks are able to approximate this data set with reasonable accuracy.
Thus, the NASA data set provides an acceptable balance of small model size, with
the ability to generalize and a low generalization error.

The other data sets show a high degree of nonlinearity and a substantial num-
ber of outliers. The oscillating character of transfer functions of 3-layer networks
trained with data sets 5 and 6 indicate that these data are not suitable for con-
structing a general cost model. These difficulties might be caused by ignoring
additional aspects of software products and also ignoring characteristics of the de-
velopment process and team. The additional information is only available for the
original COCOMO data set and therefore this data set was considered in the last
experiment.

In Experiment 5, the initial architecture of the neural network was set arbitrarily
to 18-10-1 (the numbers of input and output nodes are given by the dimensions of
the data set). This network was able to learn to zero MSE in 100 learning cycles.
Subsequently, the number of hidden nodes was decreased and the hidden layer
was eventually eliminated. The resulting network has architecture 18-1 and is still
able to learn the given data set with zero error. In other words, the COCOMO
data set is linearly separable. This is true for a neural network trained with the
entire data set. However, when the data set is divided into a training set (2/3 of
the projects) and a validation set (remaining 1/3 of the projects), the situation
changes dramatically. Though the training error still converges to 0, the error
obtained through validation is high, as illustrated in Fig. 3.

The linear separability, achieved through adding effort adjustment factors and
other characteristics, may appear as good news. However, there are two problems
remaining. First, the model is clearly “over-parameterized” as it is constructed
using 63 data points described by 18 parameters [4]. Second, the more parameters
in the model, the more values have to be estimated. Thus the overall uncertainty
of the predicted effort is the product of uncertainty inherent in all 18 parameters.

Even when these obviously practical problems were omitted, it is likely that
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Fig. 2 Cost data and transfer functions learned from the data by 2-layer (dashed
lines) and 3-layer (solid lines) neural networks.

inconsistency of the data (see the results of Experiment 1) together with small
number of projects and large number of parameters would lead to the problem of
over-fitting corrupting the generalization capabilities of any neural network.

5. Comparative study

In the previous section, the results of a series of experiments were shown and ana-
lyzed to demonstrate some important properties of several available software cost
data sets. In these experiments, neural networks were used to judge the quality
of the data without the goal of building any particular prediction model. It is,
however, possible to use neural networks to build such models. Neural network
based models can adapt to any consistent data and provide predictions outper-
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Fig. 3 Training process of Experiment 5.

forming traditional models [16], [10]. To demonstrate the performance of neural
estimation models on data sets considered in this paper, three models were built
to allow comparison.

Data from all data sets were combined to obtain a total of 161 projects. 40%
of the data (65 projects) was selected at random to form a new (training) data
set. This data set was then used to construct two regression models and to build
a neural network prediction model.

The first regression model takes a linear form described by

E = a + bS, (3)

with coefficients a = −250 and b = 12.743. The coefficient of determination for
this model has value R2

lr = 0.571.
The second model is the second order polynomial (quadratic) in form

E = a + bS + cS2, (4)

0.0398x2 - 2.488x + with coefficients a = 304.74, b = −7.6773 and c = 0.0587. The
coefficient of determination for the quadratic model is R2

qr = 0.844.
The third model is build using a MLP network with topology 1-22-1. The

number of hidden neurons was chosen as average of optimal numbers of hidden
neurons found in Experiment 1 described in Section 4.

After all three models were constructed, the entire data set (161 projects) was
used to evaluate performance of each model. The results of this experiment are
shown in Tab. VI.
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Model Linear (3) Quadratic (4) Neural network
pred(25) [%] 8.86 13.92 16.46
MIN error [%] 4.24 2.41 2.27
MAX error [%] 4564.78 5677.52 1410.66
AVG error [%] 510.35 582.09 111.56

Tab. VI Estimation results for three models models.

6. Conclusions

Estimation of effort or cost of developing software systems is an important task
within any software organization. The approaches to its solution vary from ex-
pert judgement through estimation by analogy [20] or using learning models [10],
to parametric cost models [4]. Each of these approaches is based (explicitly or
implicitly) on knowledge of the past software projects. Therefore, the quality of
any model (its ability to make correct predictions of effort) depends heavily on the
quality of available data in terms of coverage and consistency.

Flexibility, objectivity, correctness, and computational economy are desirable
features that make MLP networks attractive for use in data modelling applica-
tions. This paper has examined the use of such neural networks for the purpose of
modelling empirical software engineering data with favorable results that can be
applied to more sophisticated modelling applications.

In this study, neural models have been used to evaluate the quality of several
available data sets, with quality defined as consistency within a data set and across
different sets, and the number of terms (order) of the model necessary to describe
the data with a reasonable precision. Evaluating the generalization capabilities of
the data sets has revealed that NASA set offers the highest performance for the
factors that were examined. This data set was found to have the lowest generaliza-
tion error in two separate cross validation experiments and it was established that
an optimal 2-layer MLP network topology for this data set does not require a large
number of hidden nodes. Thus NASA data set provides an acceptable balance of
a small model size with the ability to generalize and a low generalization error.

Overall, the data sets analyzed in this paper are mutually inconsistent. This
indicates that cost data collected within an organization cannot be simply used
to build estimation models in other organizations. In other words, building local
models using local data seems to be a more valid approach than the attempts to
create a universal model usable in any software organization. Neural networks are
particularly suitable to build such local models as shown e.g. in [6]. Their great
advantage is the ability to learn, which can be used to calibrate the model or to
include new data as they become available.

The experimental results indicate that the nonlinear character of constructive
cost data leads to the need for multiple hidden layers in neural networks used
to model these data sets. Multiple hidden layers give the system more flexibility
to model such nonlinear relations. Further validation of this hypothesis will be
necessary to avoid the risk of losing generalization capabilities in exchange for
higher precision of the network training.
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