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Abstract: Swarm intelligence is an emerging field with wide-reaching application
opportunities in problems of optimization, analysis and machine learning. While
swarm systems have proved very effective when applied to a variety of problems,
swarm-based methods for computer vision have received little attention. This pa-
per proposes a swarm system capable of extracting and exploiting the geometric
properties of objects in images for fast and accurate recognition. In this approach,
computational agents move over an image and affix themselves to relevant features,
such as edges and corners. The resulting feature profile is then processed by a clas-
sification subsystem to categorize the object. The system has been tested with
images containing several simple geometric shapes at a variety of noise levels, and
evaluated based upon the accuracy of the system’s predictions. The swarm system
is able to accurately classify shapes even with high image noise levels, proving this
approach to object recognition to be robust and reliable.
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1. Introduction

The behavior of ants and other social insects has inspired the development of artifi-
cial distributed problem-solving systems. Each individual member of a society has
its own agenda and follows very simple rules; more complex global-level patterns
emerge solely through the agents’ interactions with each other and their environ-
ment, without supervision or central control. There are primarily two types of
interactions between insects in a colony: direct and indirect. Direct interactions
involve tactile, visual, or chemical contact. Indirect interactions are initiated by in-
dividuals that exhibit some behavior that modifies the environment, which in turn
stimulates a change in the behavior of other individuals. Although these interac-
tions may be simple, together they can solve difficult problems, such as finding the
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shortest path to a food source [5]. This collective behavior of social insects by means
of self-organization has been termed swarm intelligence [1]. Models of swarm intel-
ligence used to solve various problems have recently been gaining attention in the
research community. Swarm approaches offer many problem-solving benefits, in-
cluding increased flexibility, robustness, decentralization, and self-organization [2].

This paper presents a system that uses artificial agents that model the behavior
of social insects to perform feature detection and object recognition tasks. The
basic objective is to detect and identify simple objects in images. The ultimate
goal of the ongoing research is to develop systems capable of detecting complex
objects, such as human facial features or pathological changes in medical images.

The paper is organized as follows. Section 2. provides background informa-
tion on computer vision and swarm systems. Section 3. describes the proposed
swarm-based algorithm for feature detection and object recognition. Results of ex-
periments are summarized in Section 4. Finally, Section 5. brings major conclusions
and gives insights on the importance and possible future extension of this work.

2. Background

2.1 Computer Vision

Computer vision is a well-established area with many efficient methods for image
processing, including feature detection and object recognition. While these meth-
ods provide numerous solutions to the feature extraction problem, they all require
computationally complex structures and operations that introduce performance
and scalability problems. In addition, most of these methods are indifferent to the
underlying meaning and boundaries of analyzed regions, and do little to reduce the
complexity of the output data.

A common method for region extraction involves assigning each pixel a level
of belonging to a region or group [3]. While this may accurately allow for the
characterization of fixed regions, it does not provide insight into the underlying
nature of the area such as its general geometry and characteristic features. This is
a capability lacking in most current approaches. Through extraction of an object’s
key features, it is possible to create a simplified representation of the object that
is compatible with a suitable classification system. By extracting and utilizing
geometric properties of an image, it is possible to reduce the complexity of the
image’s representation as seen at the input of the classification system. This results
in a significant decrease in the computational complexity required to analyze object
data, without degrading the accuracy of the results.

The approach proposed in this paper uses a swarm system to simplify a grey-
scale image into a list of key geometric properties such as the vertex count, the
number of aligned line segments, and their relation to the total size of the object.
This form of object representation is suitable for analysis by a classification system,
such as a rule based system or a trained neural network. It is the aim of this study
to create an effective approach that may be further expanded to allow for rapid
characterization of complex images based upon their principal spacial trends.
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2.2 Swarm Intelligence

Swarm intelligence is a field concerned with creating algorithmic solutions based on
the collective self-organizing behavior common to many species of social animals.
In swarm systems, each individual, called an agent, follows a set of simple rules (en-
coded in the individual’s nature) and reacts to environmental conditions. The com-
bined behavior of these simple individuals gives rise to complex systemic behavior
such as high-level problem solving and coordinated tactical action. A characteristic
of these systems is that each individual has little or no knowledge of the overall lay-
out of the environment or the high-level system goals. While some systems allow for
direct communication between agents, most function solely on indirect interaction
where agents take stimulus cues directly from the environment. In this scenario,
past actions of a swarm on the environment affect future actions of individuals
in the swarm [6]. By altering and responding to a common environment, agents
can effectively communicate and complete high-level tasks. Initially proposed by
Grassé in 1959 [9], this process is known as stigmergy and has been observed in the
social functions of ants, termites, and some species of spider [3, 6]. It is possible
to combine such stigmergic systems with another type of swarm behavior: particle
swarm optimization (PSO). Modeled after the flocking behavior of birds and fish,
PSO effectively flies a swarm of solutions through a multi-dimensional search space
using state memory and inter-agent attraction. It has been shown that swarm sys-
tems employing stigmergic and PSO-like attractive behavior can effectively solve a
large range of optimization problems, usually outperforming traditional evolution-
ary computing techniques in terms of both convergence speed and computational
cost [7, 12, 16].

In addition to their use in solving traditional optimization problems, swarm
systems have recently been applied to region detection and region mapping, in-
cluding grey-scale feature extraction [3] and biomedical image transformation and
registration [15]. Several groups have shown that PSOs can also be successfully
applied to autonomous vehicle navigation [4, 8]. More closely related to the pre-
sented work, Ramos and Almeida introduce a swarm system involving the evolu-
tion of pheromone fields guiding artificial ant colonies to react and adapt to digital
habitats [13]. Also, in [11], Liu and Tang propose an autonomous agent-based im-
age segmentation approach. Their primary focus is on the computational aspects
of behavior-based reactive agents as an efficient way to search and label specific
homogeneous regions of known representations in a given image. Despite these
initiatives, it appears that very little other work has been done to apply the power
of swarm systems to traditional computer vision tasks. One of the common char-
acteristics of current image processing systems is that they attempt to highlight
features to make them more prominent. This has been done by isolating or match-
ing a region of similar pixels based on shape and/or pixel intensity value [3, 15].
In addition to highlighting features, the system presented in this study allows for
classification of image features. This is possible because the image being processed
is represented as a cloud of data points, which is then analyzed by a classification
subsystem.
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3. Swarm-based System for Object Recognition

The primary contribution of this work lies in the unique combination of a swarm
intelligence subsystem with a traditional classifier subsystem. The proposed swarm
algorithm involves the fixing of agents to the edges of an object present in an image.
The evolution of the agent population is driven by motion, feature detection, and
fixation of the agents. The swarm produces statistics about the types of features
present in the image, which are forwarded to the classification subsystem. This
subsystem can be realized in many different ways. To demonstrate the feasibility
of the swarm approach, two separate classification techniques are used: a fuzzy
rule-based system (FRBS), and an artificial neural network (ANN). The overall
structure of this evolutionary scheme is outlined in Algorithm 1.

3.1 Agent Motion

Initially, individuals in the swarm are randomly placed in the environment rep-
resenting the image. In each iteration, every individual goes through two major
steps: movement and possible fixing. Movement is governed by three components:
attraction, momentum, and randomness. Attraction provides guidance to agent
motion based on the assumption of object continuity; the agents are encouraged to
explore areas of the environment that are known to contain features of an object.
Momentum is necessary for consistent motion, and increases the likelihood that the
swarm will sufficiently explore the environment. When momentum is insufficient,

Algorithm 1 Swarm-Based System for Image Recognition
1: Read picture
2: Initialize agent position randomly in environment (no overlap permitted)
3: Determine global threshold
4: Initialize momentum vector and iteration counter
5: while there exists a free agent do
6: Increment iteration counter
7: for all free agents do
8: Check for features at current location
9: if agent decides to fix then

10: Re-categorize as a fixed agent
11: Store the detected feature (e.g. horizontal or vertical edge, corner)
12: Produce clones of the parent
13: end if
14: end for
15: All free agents move (no overlap permitted)
16: Decrement time-to-live for all free agents
17: if time-to-live=0 for any free agent then
18: The agent expires
19: end if
20: end while
21: Statistics of detected features enter object classification system
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individuals stay within the region in which they are initially placed, and their
exploration capability is greatly reduced. Randomness provides diversity to an
agent’s motion pattern and also contributes to a more complete exploration of the
environment.

Attraction is closely related to the concept of stigmergy described in Section 2.
A demonstration of this concept can be found in ant colonies, where ants release
and detect pheromones as a method of conveying information. The algorithm has
been simplified to shorten the time of each iteration by simulating stigmergy instead
of using models of actual pheromones. These models are replaced by attraction to
neighboring individuals, particularly those which are fixed at their locations in the
environment, so that agents tend to follow each other and gather near interesting
regions rather than wander through barren regions.

Motion is controlled by three system parameters: attraction, A, momentum,
M , and a base constant, C, providing randomness. A fine balance between these
parameters exists and suitable values have to be determined experimentally. When
momentum is too high, it masks the other aspects of motion. If attraction between
agents is too high, the swarm may not successfully locate all regions of interest
in the environment, and the resulting population does not faithfully represent the
object present in the image.

As mentioned above, motion of an agent is influenced by its momentum and
by attraction to other agents in the neighborhood. Selection of a direction, i, in
which to move is not deterministic, but rather stochastic, with the probability of
a particular direction to be chosen defined as

pi =
C + ai + mi

nC +
∑

i

ai + M
, (1)

where ai is an attraction function, mi is a momentum function, and n is the
number of directions accessible from the current location. The probability is set
to pi = 0 for directions that are not accessible, i.e. where movement would lead
outside the image boundary or to a location already occupied by another agent.
The denominator performs normalization so that

∑
pi = 1. The base constant,

C, provides each agent with equal probability to move in any direction before the
influence of momentum and attraction is applied. The higher the value of C relative
to the attraction and momentum function values, the more stochastic the agent
movements become. This constant is kept relatively low in order to take advantage
of the benefits provided by momentum and attraction.

The attraction to which the agent k is exposed is related to the distance between
k and the neighboring agents, j, within a defined radius. Agents that lie beyond
this radius are not considered neighbors to k. The attraction is increased according
to the fixation status of the agent j by a constant value, F , such that fj = F if
agent j is fixed, and fj=0 otherwise.

The form of the attraction function ai differs depending on the direction, i,
being examined. The directions i are indexed starting from i = 1 corresponding to
the direction up, and continuing clockwise to i = 8 corresponding to the direction
up-left.

The following two equations show how the attraction functions are defined.
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ai =





∑

l

7A−A | xl − xk | −A | yl − yk | +fl for i = 1, 3, 5, 7
∑
m

4A− 2A | (| xm − xk | − | ym − yk |) | +
+(2A− | xm − xk |)(2A− | ym − yk |) + fm for i = 2, 4, 6, 8

(2)

where set {l} contains neighboring agents lying in the top, right, bottom, or left
half-planes, set {m} contains neighboring agents lying in top-right, bottom-right,
bottom-left, or top-left quadrants, and A is a positive constant influencing strength
of attraction relative to momentum and randomness. The relationships between
the coordinates of an agent, k, and the coordinates of its neighbors, j, considered
for each direction are defined in Tab. I. An example of attractions exerted on an
agent by its neighbors is shown in Fig. 1.

12+F

6+F

12+F

6

4

16+F

Fig. 1 An example of attractions exerted on an agent (¥). Legend: ◦ unfixed
neighboring agent, • fixed neighboring agent, F – fixation constant

The momentum function mi evaluates to a positive constant, M , if the agent
moved in direction i in the previous iteration, and to zero otherwise, as shown in
the following equation

mi =
{

M if it = it−1

0 otherwise (3)

For a rectangular arrangement of pixels, there are n ≤ 8 possible directions to
move from any given position on the image. Probabilities corresponding to these
directions obtained using (1) are arranged in a vector

D = [p1 p2 . . . p8], (4)

and a particular direction is then determined using a roulette wheel selection ap-
proach.
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i Direction Range x Range y
1 up - yj > yk

2 up-right xj > xk yj > yk

3 right xj > xk -
4 down-right xj > xk yj < yk

5 down - yj < yk

6 down-left xj < xk yj < yk

7 left xj < xk -
8 up-left xj < xk yj > yk

Tab. I Relationship between the coordinates of an agent, k, and the coordinates
of its neighbors, j, considered for each direction i.

3.2 Agent Fixation and Characterization

Features in an image are identified using a feature-detection approach. For exam-
ple, edges in an image can be found by considering amplitude discontinuities that
are greater than a certain threshold. Conventional image processing involves tech-
niques such as discrete differentiation, in which the original image is convolved with
compass gradient masks in order to reveal image features. The method described
in this paper uses similar masks, but in a different manner.

In the current system, the agents examine the 3× 3 pixel area centered at their
location in the image and apply compass gradient masks. A mask is applied by
multiplying its elements with the corresponding pixel values in the image. The sum
of products of these multiplications is compared to a pre-determined threshold value
and indicates the orientation of an edge, if one exists. For initial experiments, the
choice was made to use Sobel masks because they are symmetrical and simplified
to detect gradients in two directions [14]. Many other existing sets of masks are
more complex, requiring more steps, and therefore increase the time required to
run the algorithm.

If a feature is found, the agent is fixed at the location and cloned. In order to
speed up the object detection process, the clones are placed strategically according
to the detected feature type. For example, when a horizontal edge is found, new
agents (clones) are placed to the left and right of the original agent. Each agent
is given a time-to-live, so that if it fails to find an object feature in its lifetime, it
expires, thus saving computational resources.

3.3 Iteration Control

The status of all agents is evaluated during each iteration in random order so that
the entire population is updated asynchronously. At any given time, an active
agent must be in one of two possible states: free or fixed. Each free agent moves
around the image and attempts to fix to the edges of the image, based on the
motion heuristic and the agent fixing technique, detailed in Sections 3.1 and 3.2.
Expired agents are removed from the population and no longer have any bearing
on the remaining agents. If an agent fixes to a feature, it blocks that location in the
image so that no other agent may occupy it. The entire population is continually

249



Neural Network World 3/05, 243-255

updated until all active agents are fixed, at which point the swarm has reached a
state of equilibrium.

3.4 Shape Classification

After the swarm has reached equilibrium, the statistics about the types of features
present are retrieved and forwarded to the object classification subsystem, which
has been implemented both as a FRBS and an ANN. The swarm outputs three
raw parameters to the classification subsystem: the number of fixed corner agents,
NC , the number of fixed horizontal agents, NH , and the number of fixed verti-
cal agents, NV . The inputs into the classification subsystem are different ratios
of these parameters. Currently, the systems are able to identify and discern be-
tween squares, rectangles, crosses, triangles, and circles. Brief descriptions of the
two implementations of the classification subsystem are provided in the following
subsections.

3.4.1 Fuzzy Rule-Based System

The FRBS has been selected for the initial implementation of the classification
subsystem as it is easy to design, using intuitive rules. The system is designed in
the form of a Mamdani fuzzy inference system [10]. It classifies shapes based on
three input parameters: the number of fixed corner agents, NC , the ratio of fixed
horizontal agents to fixed vertical agents, RHV = NH ÷NV , and the ratio of fixed
corner agents to fixed horizontal agents, RCH = NC ÷NH . Instead of using exact
parameter values, the FRBS allows their linguistic description in the form of fuzzy
sets. This helps to account for incomplete objects, noise, and agents that may have
erroneously fixed. The rules used to classify the objects have the following form:

(a) IF RHV ≈ 1 and NC ≈ 4 THEN object is a square
(b) IF RHV 6≈ 1 and NC ≈ 4 THEN object is a rectangle
(c) IF RHV ≈ 1 and NC ≈ 12 THEN object is a cross
(d) IF RHV À 1 and RCH > 1 THEN object is a triangle
(e) IF RHV ≈ 1 and RCH ≈ 4 THEN object is a circle

The FRBS applies these rules to the input parameters and classifies the shape
of the object based on how the parameters match the antecedent membership func-
tions corresponding to each shape. For example, in rule (a), two separate triangular
membership functions, centered around values 1 and 4, are used to represent the
ranges of acceptable values within which RHV and NC may fall, respectively, for
the shape to be classified as a square. Triangular membership functions are used
because they are easily described and implemented. The consequents of the rules
are represented by fuzzy singletons, with strongest membership achieved for input
parameters exactly matching modal values of the input fuzzy sets.

3.4.2 Artificial Neural Network

Another instance of the classification subsystem has been implemented using a neu-
ral network. Compared to an FRBS, design of an ANN-based classifier is less intu-
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itive and its operation less transparent. ANNs, however, provide greater flexibility
and the ability to learn a variety of complex non-linear mappings. The latter prop-
erty can be used to achieve an arbitrary classification performance without the
need to explicate the classification rules. Rather, learning is performed based upon
samples labeled with the desired output classes.

A three layer ANN has been implemented, consisting of two input units, six
hidden units, and five output units corresponding to individual classes/shapes.
Training occurs using a back-propagation algorithm applied to a labeled set of
perfect image data over the course of 400 training epochs. The learning rate is set
to 0.2 and the momentum term to 0.1. The activation function of the hidden and
output neurons is of the sigmoidal type.

Based on the idealized feature profile observed in preliminary trials, it has been
determined that all considered shapes could be represented by RHV or RV H and
the ratio of the number of corners to the total number of features, RCT = NC÷NT ,
where NT = NC+NH+NV . This set of input parameters is used because it provides
higher resiliency to noise. Under noisy conditions, the swarm is prone to contain an
abundance of corners, leading to a synthetically high NC . However, if the corner
statistics are represented using the RCT ratio, the object classification is successful
as long as this ratio falls within an acceptable range, partially compensation for
the spurious corners.

The neural network is fed values RCT ∈ [0, 1] and the lower of RHV or RV H .
Although not explicitly, the trained neural network considers the following relations
between the input parameters and classes of objects. Circles and triangles have
a very high RCT ratio, but differ significantly in their RHV ratios. Squares show
similar RCT ratios as rectangles, but can be distinguished by the close proximity
of their RHV ratio to unity. Finally, crosses can be identified as shapes similar to
squares but with a RCT ratio larger than that typically found in a square and less
than that found in a circle.

4. Experimental Results

The complete system has been tested on images containing the five object shapes
outlined in the last section. All tested shapes have been presented as 50 × 50
pixels grey-scale images, with white shape outlines set on to a black background,
as shown in Fig. 2. The presented shapes occupy about five percent of the total
image area, and are situated near the center of the image. To analyze these shapes,
20 swarm agents were evenly distributed on the image, each with a time-to-live of
15 iterations, and the potential to create 4 children upon fixation.

All five images, with the grey-scale values normalized to [0, 1], have been ana-
lyzed for two global threshold values: 0.5 and 0.8. These values are defined as the
intensity level in the range above which an agent bonds to a pixel. At both thresh-
old levels, each shape is tested ten times and the results are averaged to obtain the
classification accuracy. Each shape is tested at ten differing noise levels, ranging
in 10% increments from 0% to 90%. The noise level is defined as the probability
of each pixel in the image being modified by a uniform intensity value between 0%
and 80% of the maximum grey-scale intensity level. Examples of the noisy images
are shown in Fig. 3.
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Fig. 2 Shapes used for system testing.

Analysis shows that the system accurately distinguishes between a range of
sample shapes, even when the image is exposed to a moderate amount of noise or
contains an incomplete shape. Tab. II summarizes the results of object classification
under varying levels of noise. The system classifies rectangles and triangles quite
well up to noise levels of 60%. Circles and squares show a more rapid drop in
accuracy, with reliable classification up to 20% noise. These trends can be seen
in Tab. II. The rapid decrease in accuracy is likely due to the fact that squares
and circles must maintain rigid side-to-length ratios to be correctly classified. In
support of this observation, test results show that the majority of misclassified
squares are labeled as rectangles. More serious distortion only occurs at noise
levels approaching 60%. Likewise, misclassification of circles yields ‘triangle’ and
‘cross’ results. Crosses show more robust classification than circles and squares,
with good accuracy at noise levels up to 30%.

Fig. 3 Noise applied to a test image – the individual images represent noise levels
0-90% in increments of 10%.

As there are five object classes, classification by random chance is indicated by
a classification rate of 0.2, while over 50% accuracy is indicated by classification
rates greater than 0.5. The threshold level of 0.5 yields a better than random chance
of classification at noise levels up to 50%, and over 50% accuracy of classification
at noise levels up to 20%. Similarly, the threshold of 0.8 shows a better than chance
classification up to noise levels of 60% and over 50% accuracy of classification for
noise levels up to 20%. Interestingly, for rectangles and triangles, the 0.8 threshold
tests show greater than 50% accuracy up to noise levels of 60-80% on rectangles
and triangles, accurately classifying even highly distorted shapes.

A qualitative analysis showed that different types of noise have different effects
on system performance. As described above, Gaussian noise was used to mod-
ify the test images. It was found that injected Gaussian noise does not prevent
the system from identifying the major features of a shape. As such, the ratios of
relevant features do not vary greatly from their noise-free values. The addition
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of Poisson noise had a more detrimental effect on the performance of the system,
showing a greater divergence in feature ratios and a corresponding increase in mis-
classifications. Impulse and Laplacian noise lead to a plethora of erroneous corner
features being detected in the area surrounding the shape. While the addition of
new horizontal and vertical features did not greatly effect the deduced shape labels,
the increase in the ratio of corners to total features caused a decrease in classifica-
tion accuracy. While higher bonding threshold values allowed the rejection of some
noise, a tradeoff was observed between erroneous corner deletion and the detection
of continuous shape boundaries.

While this system was designed to identify single shapes, having multiple shapes
in an image will not decrease the classification rate, as the average number of
horizontal, vertical, and corner features should not change as long as the image
is homogenous with respect to shape type. A system to deduce the nature of
heterogeneous images will be presented in future work.

Global threshold 0.5 Global threshold 0.8︷ ︸︸ ︷ ︷ ︸︸ ︷
Noise ¤ @A + 4 © ¤ @A + 4 ©

0% 1 1 1 1 0.7 0.9 1 1 1 0.9
10% 0.8 1 0.9 1 0.8 0.9 1 1 1 0.6
20% 0.5 1 0.8 1 0.7 0.3 1 1 1 0.5
30% 0.7 0.9 0.4 1 0.6 0.6 1 0.7 1 0.6
40% 0.3 0.9 0.7 0.9 0.5 0.3 0.9 0.5 0.9 0.5
50% 0.3 0.9 0.5 0.9 [0.2] 0.4 0.8 0.6 0.9 0.4
60% [0.2] 0.7 [0.2] 0.9 0.4 0.3 0.5 [0.4] 0.9 [0.2]
70% 0.2 0.4 0.2 0.8 0.2 [0.1] 0.5 0 0.8 0.2
80% 0.3 0.3 0.3 0.6 0.1 0.3 0.5 0.3 0.5 0.1
90% 0.3 [0.2] 0 [0.2] 0.3 0.3 0.4 0.1 [0.2] 0

Tab. II Classification rates for shape recognition in noisy conditions. Values set
in bold font indicate the greatest noise levels at which accuracy is equal or exceeds
0.5. Values set in a pair of square brackets indicate noise levels where accuracy

begins to fall below 0.2.

5. Conclusions

In this paper, a swarm-based approach to the task of object recognition has been
proposed. In an attempt to harness the many benefits of using such computational
techniques as swarm intelligence, fuzzy sets, and neural networks, a robust system
has been created which consistently and accurately classifies objects in images.
The ‘bottom-up’ approach taken in this project allows the system to analyze the
image indirectly by building an approximation of the image using a swarm and then
analyzing the collected statistics of the converged swarm population. The system
accomplishes this complex higher-level task while utilizing agents following simpler
behavioral rules. The robustness of the proposed system is clearly demonstrated by
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its ability to correctly perform its task despite significant noise levels and occasional
incomplete detection of the object’s features by the swarm.

The primary focus of this paper is the successful combination of the swarm
and classifier subsystems. It is not difficult to imagine the numerous potential
applications to which the proposed swarm system may be applied in the future.
The problem of distinguishing healthy from pathological conditions in medical im-
ages is of particular interest to the authors, and the work presented in this paper
establishes a solid groundwork for future investigation in this field.
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[9] Grassé P.: La reconstruction du nid et les coordinations inter-individuelles chez Bellicositer-
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