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Abstract. Aggregation operations play an important role in decision-making problems where a weighted combination of several
criteria is used to select an alternative with the strongest support. In fuzzy set theory, aggregation operations are usually modeled as
intersection, union, or as combination of both. The particular form and algebraic properties of these operations vary according to
requirements for compensation among the criteria and other characteristics of the given decision-making situation. Traditionally,
only algebraically well-behaved operations have been considered for this purpose. By relaxing some algebraic constraints, more
realistic operations can be obtained that closely capture certain features of human decision-making, such as preferences and a
limited level of detail.
This paper proposes a method to generate fuzzy aggregation operations using genetic programming. It is shown that an evolu-
tionary process, facilitated by genetic programming, has the capacity to generate new valid fuzzy aggregation operations and to
reproduce existing ones. By varying process conditions, encoded in a fitness function, it is possible to obtain operations with
different logical and algebraic properties. This approach, based solely on the axioms which define the desired class of operations,
explores the space of possible functions and often leads to discovery of new operations. However, the proposed system can also
be used to generate aggregation operations that fit a collected data set. This application is very important as it provides a powerful
new tool for modeling and processing empirical data.

1. Introduction

Aggregation operations combine several criteria in
order to evaluate the overall support to various alter-
natives in decision-making problems [16]. They serve
as connectives of facts and conditions entering such
process [19]. In fuzzy set theory, aggregation opera-
tions are usually modeled as intersection, union, or their
combination. The particular form and algebraic proper-
ties of these operations vary according to requirements
for compensation among the criteria and other char-
acteristics of given decision-making situation. There
are close to one hundred different families of fuzzy
aggregation operators used in various applications [2].

In this paper we propose to use genetic programming
for generation of fuzzy aggregation operations in an
automated manner. It is shown that the evolutionary
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process is able to reproduce some of the existing aggre-
gation operations as well as to generate new operations
with a broad range of algebraic and semantic proper-
ties. In addition, it is possible to constrain the process
to evolve functions conforming to a set of empirical
data.

This paper is organized in six sections. Section 2
provides an overview of fuzzy aggregation operations
and identifies some of their important classes. The in-
formation contained in this section also serves as a re-
source for choosing various fitness functions driving
the evolutionary process of genetic programming. The
proposed genetic programming system is described in
Section 3. In Section 4, results obtained using the pro-
posed approach are presented. Properties of the result-
ing operations are analyzed and plausible interpretation
of their semantics is proposed. This section also illus-
trates possible application of this approach to model-
ing of empirical data. Finally Section 5 draws main
conclusions and presents plans for future work.
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2. Fuzzy aggregation operations

In fuzzy set theory, aggregation operations fA are
usually formalized using the following system of con-
ditions:

Commutativity: fA(x, y) = fA(y, x),
Associativity: fA(x, fA(y, z)) = fA(fA(x, y), z),
Monotonicity: (x � u) ∧ (y � v) ⇒

fA(x, y) � fA(u, v),

and boundary conditions, either in the form

fA(1, x) = x ∧ fA(0, x) = 0, (1)

for norms, or

fA(1, x) = 1 ∧ fA(0, x) = x (2)

for co-norms. By selecting appropriate boundary con-
ditions or relaxing some of the other conditions, a va-
riety of alternative aggregation operations can be ob-
tained.

2.1. Classes of fuzzy aggregation operations

2.1.1. Triangular norms
Boundary conditions Eqs (1) and (2) lead to two im-

portant classes of aggregation operations: T-norms (fT)
corresponding to conditions in (1), and T-conorms (f S)
specified by conditions in (2). The boundary condi-
tions can be also described in terms of a unit element
e, for which fA(e, x) = x; and an absorbing element
g, for which fA(g, x) = g. The absorbing element,
g, determines the level of compensation, γ, among the
criteria entering the aggregation proces.

The absorbing element for T-norms is g = 0. This
means that both conditions x, y are absolutely neces-
sary: if one of the conditions is not satisfied, the cor-
responding alternative is completely rejected [9]. In
other words, T-norms provide no compensation, γ = 0.

The absorbing element of T-conorms is g = 1.
Therefore, if one condition is fully satisfied, the given
alternative is accepted without regard to the second con-
dition: T-conorms provide full compensation, γ = 1.

2.1.2. Compensatory operations
The two extremes described above are not appro-

priate in many practical situations where aggregation
usually shows some degree of compensation. This
fact was noticed two decades ago by Zimmerman and
Zysno [19]. They proposed to use a combination of a
T-norm and a T-conorm,

(1 − γ)fT(x, y) + γfS(x, y), (3)

to achieve an arbitrary compensation, γ ∈ [0, 1]. This
could be interpreted as a generalization of the dual con-
cept of aggregation as an exclusive ‘and/or’ operation
to a more general ‘and-or’ operation. However, the
resulting operations are non–associative.

2.1.3. Nullnorms
Calvo et al. have proposed a new class of binary ag-

gregation operations called nullnorms [4]. Nullnorms
(fN) are continuous associative monotonic functions
with boundary conditions relaxed to only

fN(1, 1) = 1 ∧ fN(0, 0) = 0, (4)

with absorbing element g ∈ [0, 1]. Indeed, these op-
erations can provide an arbitrary degree of compensa-
tion. Unlike compensatory operations Eq. (3), null-
norms hold all the conditions defined for aggregation
operations, above, including associativity. Goodman
et al. [9] introduced generalized nullnorms that do not
have to satisfy the condition of commutativity. The dis-
missal of commutativity causes asymmetry of aggrega-
tion that has a very interesting semantic interpretation.
For example, when combining existing knowledge with
new evidence, more emphasis could be put on either
the old or the new knowledge. In other words, non-
commutativity allows aggregated values to be assigned
with priority.

2.1.4. Non-associative operations
Martinez et al. [13] recently proposed several non-

associative aggregation operations in addition to the
compensatory operations described in [19]. They
proved that such operations are semi-associative in the
sense that x � y � z implies that

fA(x, fA(y, z)) � fA(y, fA(x, z)) �
fA(z, fA(x, y)).

More importantly, they showed that these opera-
tions are in accord with the so called “7 plus minus 2”
law [14]. This rule states that a person can normally
distinguish between no more than 7 ± 2 classes. The
upper boundary of this rule, nine, corresponds to the
fact that the maximal difference between two ternary
expressions fA(fA(x, y), z) − fA(x, fA(y, z)) due to
non-associativity is equal to 1/9. This implies that the
maximal level of granularity of a system based on such
operations is 9.
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2.2. Choice of an appropriate aggregation operation

Choice of an appropriate aggregation operator for a
particular application is a difficult task with very lit-
tle guidance provided by conventional approaches [2].
Choosing an operator on the basis of its theoretical
properties is not feasible as these properties define a
very large class of operators rather than a particular
expression [1]. Zimmermann [18] offers several crite-
ria for selecting aggregation operators. The criterion
based on empirical fit is probably the most important,
having a direct quantitative interpretation using a mean
square error of approximation.

The problem of selecting an aggregation operator to
fit empirical data has been addressed by several au-
thors [8,11,19]. However, the proposed solutions are
limited to fitting the parameters of aggregation oper-
ators without changing their structure. A number of
similar but more general methods based on monotonic
univariate splines and additive generators have been
proposed by Beliakov and are summarized in [1].

Although used in fields such as computer vision [7,
10], and other problems within the area of fuzzy sys-
tems [6], evolutionary computing has not been applied
to the problem of fitting fuzzy aggregation operators to
data. In this paper, a new method for generating fuzzy
aggregation operators is proposed. Based on genetic
programming, this approach is not limited to parametric
optimization of known families of operators but allows
structural optimization of the solution to the data-fitting
problem.

3. Genetic programming of fuzzy aggregation
operations

3.1. Genetic programming

Genetic programming (GP) applies the genetic
model of learning to the space of functions or pro-
grams [5]. In a GP system, there is a population of
programs that describe candidate solutions to a prob-
lem at hand. This population of programs is iteratively
transformed into successive new generations by apply-
ing principles and processes observed in evolution of
natural systems and genetics.

GP starts with an initial population of randomly gen-
erated individuals composed of functions and termi-
nals suitable for the problem at hand [12]. In the case
of aggregation operators, functions may be arithmetic
and logic operations, such as multiplication, addition,

minimum, maximum, etc. The individuals that consti-
tute the population are programs that, when executed,
are the candidate solutions to the problem (e.g. po-
tential fuzzy aggregation operators). Each program in
the population is evaluated using a fitness measure that
measures how well it performs in solving the problem.
In many cases, fitness can be measured in terms of the
error a program produces when run over a set of test
cases. For fuzzy aggregation operators, the test cases
can be derived from the axioms that must be satisfied
by a desired family of operators. In the case of fitting
an operator to empirical data, additional test cases may
be derived from the data.

After the fitness of all individuals in the current pop-
ulation is evaluated, a new population is formed using
the principles of selection, and the genetic operators,
crossover and mutation. Due to the nonlinear nature
of these processes and operators, a GP system is ca-
pable of exploring a large portion of possible solutions
to a given problem in a function space. Because in-
dividuals are selected for genetic manipulation based
on their fitness, the population is likely to improve its
overall fitness over time, increasing the chance of find-
ing a high-fitness individual that can be designated as
the result of the GP process. The populations continue
to reproduce and evolve until a stopping criteria is met
(e.g. a perfect-fit individual is found, or a predefined
number of generations has been reached). The over-
all scheme of the genetic programming system is illus-
trated in Algorithm 1. Details of the individual steps
are described in the following subsections. More infor-
mation on genetic programming can be found in [12,
17].

Algorithm 1 Genetic Programming System

Generate a population of computer programs � Initialization
Execute each program and evaluate how well � Fitness

it solves the problem evaluation
Create a new population of computer � New

programs generation
1. select existing programs with high fitness � Selection
2. Alter existing programs by � Mutation

random modifications
3. Combine existing programs by � Crossover

recombination
Repeat Reproduction Until stopping criteria � Iteration

is satisfied
Result is designated as the best-so-far solution � Solution

3.1.1. Initialization
As mentioned earlier, GP starts with an initial popu-

lation of randomly generated individuals. The individ-
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Fig. 1. Tree representation of algebraic sum x + y − xy.

Table 1
Function and terminal sets

Function Set
+,−, ∗, / basic arithmetic operations
m, M minimum and maximum operations
e, r power and root operations

Terminal Set
x, y vectors of discrete values [0, 1]
p positive integer constant
0, 1 constants

uals in a GP system are computer programs that must
be represented in a form suitable for their execution,
evaluation, and for application of the genetic operators.
Programs are usually expressed in GP as binary parse
trees. For example, a simple function describing the
T-conorm algebraic sum x+ y−xy can be represented
as shown in Fig. 1.

The individuals (programs) in the population are
composed of elements from the function set and the
terminal set. The elements selected for the purpose
of this study are listed in Table 1. These symbols are
chosen because they reflect the typical set of operators
and operands found in most fuzzy aggregation opera-
tors [16].

Although the individuals can be represented by bi-
nary parse trees, the trees are usually encoded into char-
acter arrays called chromosmes, in which each charac-
ter represents one of the elements found in the function
and terminal sets. Such a character encoding scheme
is used for its simplicity and efficiency in processing
and manipulating the individuals. The first entry in the
array is always a function since it represents the parent
node of the entire tree. Its corresponding leaf terminals
or functions are located in the following two entries.
In general, the corresponding two leafs of any function
located at position k are located at positions 2k and
2k + 1. As an example, the array representation of the
parse tree from Fig. 1 is shown in Table 2.

3.2. Fitness

The fitness of each individual is evaluated using a
fitness function. In the case of GP system described in
this paper, this function encapsulates the axioms that
classify an operator as a fuzzy aggregation operator
and incorporates semantics of a particular family of
such operators. Thus, the fitness function evaluates
how strongly each operator conforms to the axioms
and requirements for a given class of operators (e.g.
triangular norms, nullnorms, etc.).

The test cases evaluate the individuals using vectors
of N discrete values in the range [0, 1], producing a
set of resultant vectors, Ri. Each resultant vector is
compared to a vector Si that contains the desired val-
ues derived from the axioms of a given family of fuzzy
aggregation operators. For each pair of resultant and
desired vectors representing a single condition, an av-
erage sum of the squared error can be determined using
the following formula

Ei =

N∑

l=1

(
Ri(l) − Si(l)

)2

N
, (5)

where Ei is the error value for condition i, Ri is the
vector resulting from running the i-th set of test cases,
and Si is the i-th vector of expected values. The con-
ditions that can be used in the fitness function to repre-
sent specific properties desired from fuzzy aggregation
operators are described in the following paragraphs.

3.2.1. Commutativity
Commutativity is tested by checking reciprocal

boundary conditions. The following must hold true

fA(x, y) = fA(y, x).

To test for this property, two input vectors x and y are
first submitted to the operator (in order) yielding vector
Rc. The two input vectors are then executed in the
opposite order yielding the vector Sc. The vector Rc is
expected to hold exactly the same values as vector Sc.
Any deviations from this assumption are captured by
error component Ec determined using Eq. (5).

3.2.2. Associativity
In order to be associative, an operator must satisfy

the following equality

fA(fA(x, y), z) = fA(x, fA(y, z)).

On the left hand of the equation, the operator is first ap-
plied to x and y, and secondly to this result and z yield-
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Table 2
x + y − xy in its character encoding

T-conorm x + y − xy

Element + X − Y * X Y
Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ing vector Ra. On the right hand side of the equation,
the operator is first applied to y and z, and secondly
to this result and x yielding vector Sa. Associativity
requires that these two vectors are equal, Ra = Sa.
Any departure from this requirement will result in a
nonzero value of the error component Ea determined
using Eq. (5).

3.2.3. Monotonicity
For an aggregation operation fA to be monotonous,

the following implication must hold

x � y ∧ y � z ⇒ fA(x, y) � fA(y, z).

Because of the logical condition ‘less or equal than’,
this property is evaluated in a different way than Eq. (5).
Three vectors are chosen that satisfy the condition,
xi < yi < zi|∀i ∈ [1, N ]. The operator is first applied
to x and y, then to y and z yielding two resulting vectors
Rm and Sm, respectively. Unlike commutativity and
associativity, it is not necessary for the two results to be
equal. Instead, it is necessary that the values in Rm are
less than or equal to the values of the corresponding el-
ements in Sm. Thus, in the error equation the square of
the difference between the resultant and desired values
is only considered when this condition is not satisfied

Em =

N∑

l=1

(
Rm(l) − Sm(l)

)2|Rm(l)>Sm(l)

N
(6)

3.2.4. Boundary conditions
The boundary conditions have adifferent form de-

pending on which class of aggregation operations is
considered. For T-norms, the boundaryconditions have
the following form

x fT 1 = x, 1 fT x = x, (7)

x fT 0 = 0, 0 fT x = 0. (8)

The operator is applied to x and 1 (a unit vector) to
give a resultant vector Rbt1 for the condition Eq. (7).
The expected vector, Sbt1 is equal to x. To evaluate
condition Eq. (8), the operator is applied to x and 0 (a
null vector) to give Rbt2. The expected result, Sbt2, is
equal to the null vector.

Similarly, the boundary conditions for T-conorms are

xfS1 = 1, 1 fS x = 1, (9)

xfS0 = x, 0 fS x = x. (10)

The operator is applied to x and 1 to obtain the resul-
tant vector Rbs1 for boundary condition Eq. (9). The
expected vector, Sbs1, is equal to the unit vector. The
operator is then applied to x and 0 to give resultant vec-
tor, Rbs2 for the second boundary condition Eq. (10).
The expected result, Sbs2, is equal to x.

Test cases for other families of aggregation operators
can be derived in a similar way, based on the relaxed
axioms given by Eq. (4).

3.2.5. Empirical data
To incorporate desired semantics of aggregation op-

erators implied by empirical data, vectors x, y, and Sd

must be obtained from the data set. The operator is
then applied to vectors x and y yielding resultant vec-
tor Rd. This vector is then compared to the vector of
expected results Sd and the data error component, Ed

is determined using Eq. (5).

3.2.6. Penalization
To improve convergence of the evolutionary process,

the fitness function can be augmented to include more
restrictions on the individuals generated. For example,
some individuals may contain only one operand while
(at least) two operands are required for any aggrega-
tion operator. To enforce this restriction, a penalty Ep1

is applied if both x and y are not found in the indi-
vidual’s parse tree. Another potential problem stems
from the simplicity of some existing operators, such
as standard and algebraic triangular norms. Because
the form of these operators is very simple, there is a
significant chance that such operators will be gener-
ated as new individuals or obtained by genetic manip-
ulation. This could lead to so called genetic drift – a
change in frequencies of individuals in a population,
resulting from chance rather than selection. Genetic
drift reduces the genetic variability in the population,
effectively preventing GP from discovering new pro-
grams (e.g. new fuzzy aggregation operators). To avoid
this situation, individuals corresponding to known but
undesirable aggregation operation are given a penalty
Ep2.
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3.2.7. Calculation of fitness
Error components calculated for each condition

(associativity, commutativity, monotonicity, boundary
conditions, etc.) are combined to obtain the overall
fitness of given operator

F =

∑

i

wiEi

n
, i ∈ {c, a, m, b, d, p} (11)

where Ei is the error value of component i, and n is the
total number of conditions considered. The weighting
coefficient, wi, allows assignment of a different impor-
tance to each error component Ei which may be useful
for certain classes of aggregation operators.

3.3. Creating a new population

The process of creating a new population of indi-
viduals (i.e. candidate fuzzy aggregation operators) is
driven by selection and genetic manipulation of the
individuals.

3.3.1. Selection
Selection takes place between two generations: some

individuals from the current generation are selected and
passed to the next. The criteria for selection is the
fitness value of the individual. The genetic operators
(crossover, mutation) are then applied to the individuals
that have been selected.

The manner of selecting individuals to undergo ge-
netic manipulation is a major factor in the convergence
rate of a genetic program, and it is largely determined
by selective pressure – the probability of the best in-
dividual being selected as compared to the average
probability of selection of all individuals. Strong se-
lective pressure can lead to premature convergence of
the population towards globally optimal solutions (e.g.
towards aggregation operators resembling the min or
max operators). These solutions would then exploit
themselves by replicating repeatedly and thus the pop-
ulation would inevitably exhibit genetic drift. On the
other hand, weak selective pressures can make the ge-
netic search ineffective by lack of convergence. There-
fore, it is important to strike a balance between strong
and weak selective pressures that works well for a par-
ticular problem [15]. In the case described in this study
it is important to search a diverse space of solutions
while still keeping an overall gradual convergence.

To implement fitness-based selection, fitness values
first have to be normalized. According to the fitness
function, Eq. (11), individuals with a lower numerical
values of fitness are stronger. To simplify this inverse

relationship, a probability is assigned to each individual
based solely on its rank with respect to the rest of the
population

Ps = q ∗ (1 − q)r, (12)

where Ps is the probability that individual s is selected,
r is the rank of the individual in the population, and q is
a constant between 0 and 1 determining selective pres-
sure. This selection method provides a greater degree
of diversity since it is irrelevant how much difference
occurs from consecutive individuals, ranked according
to fitness. Figure 2 illustrates convergence of a typical
GP run in terms of average and best fitnesses.

3.3.2. Recombination and mutation
Genetic recombination, also called crossover, is the

process of creating a new individual from parts of
its parents’ representations. In this study single-point
crossover is used in which a point in the chromosome
(representing a program) of each of the selected parents
is chosen randomly. The substrings of these two points
are then exchanged to create two different individuals.

Mutation is a random change to an individual’s rep-
resentation and takes place at a mutation rate. Each in-
dividual is assigned a random number, RAND. If RAND
is less than or equal to the mutation rate, Pm, mutation
will take place. If an individual is chosen for mutation,
a point in its parse tree is randomly chosen and changed
along with the values included in its subtree.

Mutation and crossover rates also affect the conver-
gence of the population. Similar to parent selection
pressures, it is important to strike a balance in crossover
and mutation rates. For example, high crossover rates
can lead to genetic drift. When individuals in the pop-
ulation resemble each other, the crossover of the these
individuals often produce very similar children. Mu-
tation, however, increases the population diversity by
providing an element of randomness. Diversity is par-
ticularly important when the population has already sig-
nificantly converged as it provides the means to avoid
local minima. The mutation rate can be varied to pro-
vide an optimal degree of variation suited for a given
problem.

3.3.3. Elitism
Individuals selected for crossover and mutation are

not themselves replicated in the following generation:
only their children or mutants appear in the next popu-
lation. Thus, parents with strong fitness values would
not survive regardless of their high performance. To
avoid this problem, elitism has been incorporated into
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Fig. 2. a) Average fitness of individuals per generation, b) Fitness of the best individual in each generation.

the GP algorithm to copy the best individuals into the
next generation. The size of the elite population is set
small enough to provide enough vacancies in the popu-
lation for new individuals yet large enough to provide a
sufficient representation of the fittest individuals in the
population.

4. Experimental results

The GP system described in the previous section has
been used to perform a number of experiments aimed
at generation of fuzzy aggregation operators. The ex-
periments can be divided into two groups: explorative
generation of universal operators based solely on a set
of formal conditions; and generation of operators par-
ticular to a set of empirical data. The parameters of
the GP system were set as follows: population size
n = 10000, function and terminal sets as in Table 1, se-
lective pressure q = 0.1, number of test cases N = 11,
probability of mutation Pm = 0.1, elitisms 10%, penal-
ties Ep1 = 1 and Ep2 = 100, and stopping criteria
Gmax = 100.

4.1. Explorative generation of fuzzy aggregation
operations

Initial experiments were conducted with a fitness
function based only on the formal axioms of associativ-
ity, commutativity, monotonicity, and boundary condi-
tions. The system converged to operations resembling
the simplest cases of intersection and union operations:
min(x, y), xy, and max(x, y). These results were ob-
tained either directly in their basic form or in a more

Table 3
Generated aggregation operations

Operator Fitness

f1
A = x

yx−2 F = 0.000038

f2
A = min(y,

√
(x)) F = 0.008049

f3
A = x2y F = 0.000473

f4
A = x min(x, y) F = 0.001157

f5
A = xy

( 1
1+y

)
F = 0.001686

f6
A = (yyx

)yx
F = 0.005434

f7
A = max(y max(x, y), x2) F = 0.001141

f8
A = y1−x F = 0.039150

f9
A = x + y

1
(1−x) x√x

x√x F = 0.008026
f10

A = max(x,
√

y) F = 0.009493

complicated form that could be simplified to obtain a
basic one. Examples of such results are

xmin(y, min(y, 1)) = xy

min(1, min(y, min(1, x))) = min(x, y)

max(x, max(x, max(y, y))) = max(x, y).

Subsequently, penalization terms were incorporated
into the fitness evaluation to increase the selective pres-
sures toward non-standard aggregation operations. A
variety of other aggregation operations were found that
exhibit small nonzero error caused by minor violation
of some traditional axioms. However, as discussed
in Section 2.1, relaxation of certain axioms may lead
to operations that are more realistic than fuzzy aggre-
gation operations defined in the strict sense. Several
examples of such operations are provided in Table 3.

Aggregation operations f 1
A through f 5

A exhibit inter-
section-like behavior while operations f 6

A through f 10
A

can be regarded as models of a fuzzy union. The differ-
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Table 4
Properties of obtained aggregation operations (Legend: Y satisfied,
N not satisfied, −− strong preference of first operand, − weak
preference of first operand, 0 − no preference, + weak preference
of second operand, ++ strong preference of second operand)

Operation Commutativity Preference
f1

A N +

f2
A N +

f3
A N −

f4
A N −

f5
A N −

f6
A N −−

f7
A Y 0

f8
A N ++

f9
A N +

f10
A N −

ent operations have algebraic properties (such as com-
mutativity) that provide a different degree of prefer-
ence to the first or the second operand. Properties of
the aggregation operations are summarized in Table 4
and are illustrated in Figs 3 and 5. In addition, three-
dimensional plots of selected functions are compared
to standard T-norm and T-conorm in Figs 4 and 6, re-
spectively. It is evident that the generated functions
offer a wide variety of properties that can be used for
various decision-making situations.

4.2. Generation of fuzzy aggregation operations to fit
empirical data

This second type of experiment involved a GP sys-
tem with a fitness function augmented to contain a de-
scription of empirical data. The data used in this study
are based on a classical model problem provided by

Table 5
Comparison of Sum of Squared Errors (SSE) for dovetailing tile
quality problem [19]

Aggregation operation SSE
min(x, y) 0.6442
max(x, y) 2.5835
f2

A = min(y,
√

x) 0.3731
f11

A =
√

xy 0.1242
min(x, y).468 max(x, y).562 0.1058

Zimmerman and Zysno in [19]. The problem is con-
cerned with evaluation of the overall quality of dove-
tailing tiles based on separate assessment of two quality
components. To combine fuzzy sets describing these
two aspects, a suitable aggregation operation has to be
chosen. The fit of a given operation can be checked
against known (observed) values of the overall quality
reported in [19]. The authors proposed a compensatory
aggregation operator

fC(x, y) = min(x, y)(1−γ) max(x, y)γ , (13)

and found the optimal value of the compensation factor,
γ = 0.562. Such a compensatory operation is neither a
strong T-norm nor T-conorm but a combination of these
two extremes.

First, all operations described in the previous section
(f1

A through f 10
A ) were applied to the tile quality prob-

lem. The results were compared to the observed values
to obtain a sum of squared error (SSE) for each opera-
tor. The best results were obtained with the aggregation
operation f 2

A = min(y,
√

x) yielding an SSE of 0.3731
which is of the same order as the optimal compensatory
operator (13) with an SSE of 0.1058. For comparison,
max and min operators used alone yield an SSE of
2.5835 and 0.6442, respectively.
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Though surpassing the performance of standard op-
erations, f 2

A does not compare well to the optimal ag-
gregation operator found by Zimmerman and Zysno.
Since this optimal aggregation operation is a compen-
satory function, an aggregation operator discovered us-
ing a fitness function based on the union or intersection
conditions (such as f 1

A through f 10
A ) may not yield ex-

traordinary results when applied to this problem. For
this reason, the fitness function was altered to better
suit the problem. Instead of using the boundary condi-
tions stated in Section 3.2.4, the model data provided
by Zysno and Zimmerman in the tile quality problem
was used as the inputs x and y. Applying the operator
(individual in the GP system) to the two input vectors
yielded the vector Rd while the known values of quality

were used as the desired output vector, Sd. By replac-
ing the boundary conditions in the fitness function with
the condition based on the empirical data, some new
fuzzy aggregation operators were found. The operation
f11

A =
√

(xy), has the best fitness value and yields an
SSE of 0.1242. As shown in Fig. 7(b) , operation f 11

A
does not resemble a T-norm or T-conorm operation.
Rather, it performs more closely to a compensatory
function. Performance of various aggregation opera-
tions applied to the tile quality problem is summrized
in Table 5.

Although the newly discovered operation f 11
A does

not outperform the compensatory operation from [19],
it clearly surpasses the two standard aggregation oper-
ations. To illustrate performance of this operation with
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respect to the standard fuzzy intersection (min) and
union (max), Fig. 7(a) plots the observed vs. computed
values of the overall quality for these three cases. The
diagonal line indicates the optimal relation (equality)
of these pairs of values. In addition, the form of f 11

A is
much simpler and computationally less expensive than
that of the compensatory operator fC.

As seen from this example, the discovery of fuzzy
aggregationoperators is not solely applicable to discov-
ering triangular norms and other general aggregation
operations. Rather, model data or other specific condi-
tions can easily be incorporated into the fitness function
yielding a fuzzy aggregation operator that conforms to
the conditions of a given problem.

5. Conclusions and future work

Selection of an appropriate aggregation operation for
a given set of empirical data is a challenging problem.
Its solution has led to relaxation of some strong alge-
braic conditions traditionally considered as important
properties of such operations. This fact opens wide the
possibility of applying semi-heuristic methods, such as
genetic programming, to automatically generate aggre-
gation operations with custom algebraic and semantic
properties. The major application of this methodology
is in the area of decision support systems when little is
known about how some criteria and conditions should
be formally connected and, at the same time, empirical
data are available.

In this paper, a genetic programming system capa-
ble of discovering general classes of fuzzy aggregation
operations has been proposed. Its practical applica-
tion in aggregating experimental data has been demon-
strated. The evolutionary process can be adapted to-
wards operations with different properties by simply
modifying the fitness function. The fitness functions
proposed here need to be further refined to make the
process more efficient. In addition, appropriate ways of
incorporating domain knowledge into fitness functions
could be devised to allow more direct search for aggre-
gation operations suitable for particular experimental
data or specific decision situations.
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