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Abstract

This paper describes �Immune Programming�, a paradigm in the field of evolutionary

computing taking its inspiration from principles of the vertebrate immune system. These

principles are used to derive stack-based computer programs to solve a wide range of

problems.

An antigen is used to represent the programming problem to be addressed and may

be provided in closed form or as an input/output mapping. An antibody set (a reper-

toire), wherein each member represents a candidate solution, is generated at random

from a gene library representing computer instructions. Affinity, the fit of an antibody

(a solution candidate) to the antigen (the problem), is analogous to shape-complemen-

tarity evident in biological systems. This measure is used to determine both the fate of

individual antibodies, and whether or not the algorithm has successfully completed.

When a repertoire has not yielded affinity relating algorithm completion, individual

antibodies are replaced, cloned, or hypermutated. Replacement occurs according to a

replacement probability and yields an entirely new randomly-generated solution candi-

date when invoked. This randomness (and that of the initial repertoire) provides diver-

sity sufficient to address a wide range of problems. The chance of antibody cloning,
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wherein a verbatim copy is placed in the new repertoire, occurs proportionally to its

affinity and according to a cloning probability. The chances of an effective (high-affinity)

antibody being cloned is high, analogous to replication of effective pathogen-fighting

antibodies in biological systems. Hypermutation, wherein probability-based replace-

ment of the gene components within an antibody occurs, is also performed on high-

affinity entities. However, the extent of mutation is inversely proportional to the

antigenic affinity. The effectiveness of this process lies in the supposition that a

candidate showing promise is likely similar to the ideal solution.

This paper describes the paradigm in detail along with the underlying immune the-

ories and their computational models. A set of sample problems are defined and solved

using the algorithm, demonstrating its effectiveness and excellent convergent qualities.

Further, the speed of convergence with respect to repertoire size limitations and prob-

ability parameters is explored and compared to stack-based genetic programming

algorithms.

Crown Copyright � 2005 Published by Elsevier Inc. All rights reserved.
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1. Introduction

Having computers automatically solve problems without being explicitly

programmed to do so is a central goal of Artificial Intelligence [21]. With re-
gard to problem-solving, Fogel et al. [9] argues that methods can be sought

by ‘‘mechanizing the scientific method in an algorithmic formulation so that

a machine may carry out the procedure and similarly [to the scientific method]

gain knowledge about its environment and adapt its behavior to meet goals’’.

The area corresponding to this paradigm is known as evolutionary computa-

tion (EC) [8,10] and encompasses a broad range of methods such as evolution

strategies (ES), evolutionary programming (EP), genetic algorithms (GA), and

genetic programming (GP). Refer to [10] for a comprehensive account of these
methods and their historical foundations. Evolutionary techniques can be

viewed as search or optimization techniques [24] based on the principles of nat-

ural evolution. Genetic programming [19] is of special importance in the con-

text of this paper, as it can provide solutions to problems in the form of

computer programs.

There has recently been growing interest in the use of methods inspired by

the immune system and its principles and mechanisms [5]. There are several

analogies between Artificial Immune Systems (AIS) and EC found at different
levels: both frameworks are inspired by biological systems, both employ some

form of evolutionary principles, and both can be used in largely overlapping

application domains. There are, however, significant differences that make

AIS a separate area of research. These systems have already been applied to



P. Musilek et al. / Information Sciences xxx (2005) xxx–xxx 3

ARTICLE IN PRESS
numerous types of problems such as computer security, data analysis, cluster-

ing, pattern matching and parametric optimization [7]. However, an immune

parallel to genetic programming has not yet been proposed: there has been

no attempt to use principles of immunity to automatically create computer pro-

grams. Immune programming (IP), introduced in this paper, is a novel para-

digm combining the program-like representation of solutions to problems
with the principles and theories of the immune system. IP is an extension of

immune algorithms, particularly the clonal selection algorithm [1,2], in AIS.

However, IP is not limited to finding an optimized solution for a specific prob-

lem as in immune algorithms; it is a domain-independent approach in which

solutions (computer programs) are generated that can, in turn, solve an entire

class of similar problems. To paraphrase John Koza [20], a pioneer in the field

of genetic programming, ‘‘[Immune programming] is a systematic method for

getting computers to automatically solve a problem’’.
This paper is organized in six sections. The basic concepts and mechanisms

of immunity that form the basis of the new approach are described in Section 2.

A brief overview of current research related to the use of artificial immune sys-

tems for program generation is provided in Section 3. Principles of IP are out-

lined in Section 4, along with a detailed description of its implementation and

experimental results demonstrating its enormous potential. Sensitivity studies

and a comparison of IP and GP are conducted in Section 5. Finally, Section

6 presents main conclusions and outlines possible directions for future work.
2. Immune systems

The vertebrate immune system (IS) is one of the most intricate bodily sys-

tems and its complexity is sometimes compared to that of the human brain.

With advances in biology and molecular genetics, comprehension of how the

immune system behaves is increasing very rapidly. Knowledge of immune sys-
tem functioning has revealed several of its main operative mechanisms. These

mechanisms are very interesting not only from a biological standpoint, but also

from a computational perspective. Similar to the way the nervous system in-

spired the development of artificial neural networks, the immune system has

led to the emergence of artificial immune systems as a computational intelli-

gence (CI) paradigm.

2.1. Biological immune systems

The immune system of vertebrates is composed of a great variety of mole-

cules, cells, and organs spread throughout the body. There is no central organ

controlling the immune system: various distributed elements perform comple-

mentary tasks. The main role of the immune system is to protect the organism



4 P. Musilek et al. / Information Sciences xxx (2005) xxx–xxx

ARTICLE IN PRESS
against disease-causing cells called pathogens and to eliminate malfunctioning

cells. This is accomplished by recognition, wherein the organism is searched

for these elements, followed by immune action (blocking or elimination of

the disease-causing agent, for example). In addition to recognizing pathogens

and malfunctioning cells, the immune system is also able to recognize the

organism�s own (properly functioning) cells and tissues to prevent their inad-
vertent destruction. All elements recognizable by the immune system are called

antigens: pathogens, malfunctioning cells, and healthy cells. The native cells

that originally belong to the organism and are harmless to its functioning

are termed self (or self antigens), while the disease-causing elements are named

non-self (or non-self antigens). The immune system, thus, has to be capable of

distinguishing between what is self from what is non-self. This process is

termed self/non-self discrimination.

When an antigen has been encountered and identified as non-self, the im-
mune system initiates a response to deactivate the pathogen. Although this

process is sufficient to protect the organism against certain pathogens, antigen

recognition and elimination is not enough. In order to be effective in reacting to

new pathogens and to improve response to pathogens already encountered, the

immune system is endowed with memory and the ability to learn. The mecha-

nisms of identification, memory, and learning are facilitated through the pro-

cesses of pattern recognition, clonal selection, negative selection, and affinity

maturation. These concepts are further explained in the following subsections.

2.1.1. Pattern recognition in immune system

Pattern recognition is carried out by specific components of the immune sys-

tem that are produced in the bone marrow. These components are white blood

cells (lymphocytes) of two types: B-cells (B-lymphocytes) produced and devel-

oped within the bone marrow, and T-cells (T-lymphocytes) that are produced

in the bone marrow and then migrate to the thymus for further development.

There are other elements in the immune system, such as antigen-presenting
cells, natural killer cells, message molecules, and others. These additional com-

ponents serve various auxiliary functions and their treatment is beyond the

scope of this paper.

Both B-cells and T-cells have receptors present on their surfaces that are

responsible for recognizing antigenic patterns. However, B- and T-cells detect

different features of pathogens [32] and function quite differently: B-cells can

recognize isolated antigens from outside the antigen cell, while T-cells operate

on the antigen-cell complex and can recognize parts of the complex presented
by organic molecules, see Fig. 1. There are various mechanism of interaction

between the lymphocytes and antigens as well as among different types of lym-

phocytes. An important interaction is production of antibodies by B-cells in re-

sponse to a specific antigen. Antibodies are capable of further recognition and

binding to that type of antigen. However they also directly participate in deac-



Fig. 1. Pattern recognition in an immune system: (a) B-cell recognizing an isolated antigen j, (b)

T-cell recognizing an antigen within an antigen/cell complex through part of this complex s.
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tivation of pathogens by tagging them, by activating responses of other parts of

the IS, and by neutralizing toxins entering the organism.
Receptors present on the surface of T-cells are called T-cell receptors (TCR).

T-cells serve auxiliary functions by activating B-cells to promote their growth

and differentiation into an antibody-secreting state [32]. Other types of T-cells,

called killer T-cells, eliminate intracellular pathogens presented by B-cells. Due

to their prominent role in the pattern recognition process and immune re-

sponse, the main focus of this paper will be placed on B-cells and antibodies

in particular.

The recognition process is based on matching the shape of an antigen with
the shape presented by the surface receptors of B-cells and T-cells. In other

words, the recognition in the immune system is based on shape complementar-

ity [5]. Referring to Fig. 1, the square shaped antigen, j, is complementary to

the square shaped receptor, @, while the circular shape, s, within the antigen–

cell complex is complementary to the semicircle shaped receptor, �. In reality,

the surface shapes to be matched are much more complex. The bind between

an antigen and a receptor is often not perfect but still leads to correct recogni-

tion. The degree of binding is termed affinity—the attraction between an anti-
gen and a receptor cell.

2.1.2. Clonal selection

The process of pathogen deactivation is described in [3]. For the purposes of

this paper, it is sufficient to note that the lymphocytes are directly and indi-

rectly involved in the process. Depending upon the extent of the infection, a

large number of B-cells and T-cells may be required to handle the infection suc-

cessfully and effectively. The size of subpopulations of these cells is controlled
by a process termed clonal selection.

After successful recognition, cells capable of binding with non-self antigens

are cloned. This replication causes proliferation—an increase in concentration

of lymphocytes available for recognition and deactivation of antigens of a

given type. This way, the immune system is capable of reacting to reoccur-

ring antigens with greater speed and efficiency: an effect termed secondary
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immunological response. The elements of this subpopulation also undergo

mutations resulting in a subpopulation of cells that are slightly different.

Due to the high mutation rates, this process is usually called hypermutation.

The consequence of these variations is twofold. First, the variation provides

a generalization ability in that the subpopulation is able to recognize not only

the antigen itself but also antigens that are similar. Second, some of the mu-
tated clones may represent an even better match to the given antigen than

the original cell, i.e. they may have higher affinity. This whole process of selec-

tion and hypermutation is known as the maturation of the immune response

[27] and is analogous to the natural selection of species [15]. In addition, the

cells activated by the antigen with high affinities are selected to become memory

cells with long life spans. These memory cells are pre-eminent in future re-

sponses to identical or similar antigenic patterns.

2.1.3. Negative selection

As mentioned earlier, the immune system must be able to recognize self anti-

gens to prevent their inadvertent destruction. In other words, the organism

must be able to discriminate between self and non-self antigens.

The process of training receptor cells for this discrimination takes place

mainly in the thymus, an important organ of the immune system located behind

the breastbone. The thymus performs a crucial role in the maturation of T-cells

by removing cells which recognize self-antigens from the population. This pro-
cess is termed negative selection.

The mechanism of negative selection can be described as follows. The thy-

mus is protected by a blood barrier capable of efficiently excluding non-self

antigens from the thymus environment. Thus, the elements found within the

thymus are representative of self instead of non-self. In turn, T-cells containing

receptors capable of recognizing these (self) antigens are eliminated from the

repertoire of T-cells [26] and all T-cells that leave the thymus to circulate

throughout the body are tolerant to self in that they do not detect self-antigens.

2.2. Artificial immune systems

AIS can be defined as abstract computational systems inspired by theoreti-

cal immunology and observed immune functions, principles, and models, ap-

plied to solve problems [4]. Similar to other paradigms of CI, an AIS can be

described using a suitable framework [5] specifying its representation, evalua-

tion, and adaptation facets. These concepts are further explained in the follow-
ing subsections.

2.2.1. Representation scheme

AIS is constructed using models of antigens and antibodies analogous to

biological IS [5]. Section 2.1.1 noted that the recognition mechanism in bio-
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logical IS is based on shape-complementarity between an antigen and a recep-

tor cell. To model the recognition mechanism, a suitable representation scheme

is needed to express and manipulate information about the shape of these ele-

ments. Such a scheme was proposed along with the concept of shape–space by

Perelson and Oster [28]. Shape–space, S, allows characterization of the anti-

gens and receptor cells, and quantitative description of their interactions.
The shape–space model of recognition in AIS is illustrated in Fig. 2.

The generalized shape of an element, either an antigen or an antibody, can

be represented as an attribute string m [5]. The attribute string contains val-

ues of the individual coordinates of the shape in the shape–space S, i.e.,

m = hm1,m2, . . . ,mLi 2 SL. S is generally defined on the set of real numbers

SL � RL, with special cases leading to attribute strings in integer, m 2 ZL,

and binary, m 2 {0,1}L, forms. There is an obvious analogy with the

representation schemes used in EC where the term ‘‘chromosome’’ is used in-
stead of ‘‘attribute string’’. Indeed, other forms of representation used in EC

are applicable to AIS (e.g., real–valued and permutation representations).

The choice of the most suitable representation is driven by the problem at

hand.

2.2.2. Evaluation

The interaction between an antigen and an antibody can be described as the

degree of their binding in terms of affinity. As illustrated in Fig. 2, a complete
match is not necessary for the two elements to bind: the region L � 1 of the

antigen is not complementary to that of the antibody. As a result, the two ele-

ments can still bind, however the affinity of the bind will be lower than the

highest possible affinity. In other words, the affinity of an antigen–antibody

pair is related to their distance in the shape space S and can be estimated using

any distance measure between the two attribute strings [5]. The distance be-

tween an antigen, Ag, and an antibody, Ab, can be defined, for example, using

a general class of Minkowski distance measures

DMðAg;AbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL

i¼1
jAgi �Abijp

p

r
. ð1Þ
1 L -1 L...

antigen

antibody

2 3

Fig. 2. Antigen recognition in L-dimensional shape–space.
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By varying the value of the parameter p, special cases such as Hamming dis-

tance, (p = 1), and Euclidean distance, (p = 2), can be obtained. The choice of

suitable distance measure depends on the problem to be solved and, in turn, on

the representation scheme used.

2.2.3. Adaptation

The procedures of adaptation govern the evolution of the behavior of an

AIS. The algorithms for adaptation can be classified as population-based

and network-based algorithms [5]. Only population-based algorithms are rele-

vant to the development of IP and thus only this class of immune algorithms

will be described in this paper. For a comprehensive treatment of immune net-

work theory, please refer to [16]. The population-based algorithms can be fur-

ther categorized as clonal selection and negative selection algorithms,

corresponding to simulation of B-cell and T-cell behavior, respectively. Sys-
tems simulating B-cells are oriented towards pattern recognition problems,

while T-cell systems are used for anomaly detection.

The Clonal Selection Algorithm provides a model of the clonal selection pro-

cess present in biological IS. The algorithm is summarized as follows:

1. n candidate solutions are generated and evaluated using a suitable affinity

measure.

2. n attribute strings with highest affinity are selected to proliferate by
cloning; the cloning rate of each immune cell is proportional to its

affinity.

3. Newly generated clones are subjected to hypermutation; the mutation rate

of each immune cell is inversely proportional to its affinity.

This algorithm results in change of antibody concentrations favoring those

with high affinity, and added diversity through the process of hypermutation.

Some authors [13] have argued that a GA without crossover is a reasonable
model of clonal selection. However, the standard GA does not account for

important properties such as affinity-proportional reproduction and hypermu-

tation inversely proportional to affinity.

The Negative Selection Algorithm provides a model of the self/non-self dis-

crimination capability learned in the thymus of biological IS. This algorithm

[12] has been proposed with application focused on the problem of anomaly

detection, such as computer and network intrusion detection [11], image

inspection and segmentation, and hardware fault tolerance. It can be summa-
rized as follows:

1. n candidate detectors are generated.

2. Each candidate detector, Ci, i = 1,2, . . . ,n, is compared to a set of protected

elements, PE.
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3. If a match occurs between Ci and PE, the detector is discarded.

4. Otherwise (if a match does not occur), Ci is stored in the detector set D.

This algorithm produces a set of detectors capable to recognize non-self pat-

terns. The action following the recognition varies according to the problem un-

der consideration.
3. Related research

Although AISs have been actively studied as of late [6,14,22,23], [25,31], di-

rect use of immune principles for generation of computer programs has not

been reported. However, several works related to the topic are described in

the following text.
Nikolaev et al. introduced an immune version of GP (iGP) [25]. In iGP, the

progressive search for programs is controlled by a dynamic fitness function

based on an analogy of the immune network dynamics. The method is applied

to a machine-learning task and a time-series prediction problem. The results

presented demonstrate that the immune version attains fitter programs while

maintaining higher population diversity when applied to these problems.

McCoy and Devaralan [23] use a negative selection algorithm to solve an

aerial image segmentation problem. The procedure generates a non-self detec-
tor set used to identify a target class. The results of this system are compared to

those obtained by GP and it is concluded that although both methods are suit-

able for parallel implementation, the immune version is expected to adapt more

readily to changes in its sample data by being dynamically adjustable. It is also

argued that finding a population of detectors that covers non-self features is

easier than finding a single optimal detector, since there are many ways to ar-

rive at an acceptable solution.

Both applications described use the general concepts of artificial immunity
and the principle of negative selection to modify/improve existing evolutionary

techniques [6]. A paper by Gao [14] ‘‘Fast Immunized Evolutionary Program-

ming’’ describes the modification to the selection in traditional evolutionary

programming by principles of artificial immune system. In contrast, the evolu-

tionary technique proposed in this paper is developed entirely from the princi-

ples of artificial immunity.
4. Immune programming

In this section, the proposed paradigm of Immune Programming is de-

scribed in detail. After introducing the computing architecture chosen for exe-

cution of the generated programs, the algorithm of IP is summarized and its
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individual steps are explained. A running example is used to illustrate the

concepts.

4.1. Computing architecture

The choice of computing architecture on which automatically generated
programs are executed has important implications regarding the efficiency of

the execution and portability of the programs. Although the majority of cur-

rent approaches use tree or S-expression based structures [30], there have been

several attempts to employ stack-based frameworks [29,17].

Stack-based machines have a small size, low system complexity, high system

performance, and good performance consistency under varying conditions [18].

In addition to the possibility of direct hardware implementation of stack ma-

chines, there are available stack-based virtual machines with portable, high
performance interpretation techniques [30]. These reasons led to the choice

of stack-based computing as the architecture on which the IP generated pro-

grams are executed and evaluated. Following this choice, principles of IP are

illustrated using stack-based examples in this paper. IP systems could be imple-

mented, however, using alternate architectures as well.

A computing architecture is functionally described by an instruction set. The

instruction set provides a detailed list of the operations that the machine is

capable of processing, and description of the types, locations, and access meth-

ods for operands. In a stack-based machine all operands are located and ac-

cessed on the stack, and not directly defined in the instructions.

Programs described using tree or S-expression based notation can be equi-

valently expressed using a stack instruction set, as illustrated in Fig. 3.

4.2. The algorithm

The IP algorithm is developed using the immune principles of clonal selec-
tion and replacement of low affinity antibodies. The algorithm is briefly de-

scribed as follows:
(a) -(*(x,y),+(x,*(z,y)))

x y

z    y

*

*x

push-x  push-y  mult  push-x  push-z  push-y  mult  add  sub

(b)

(c)

Fig. 3. Representation of arithmetic expression xy�(x + zy) under different frameworks: (a) S-

expression, (b) tree representation, (c) stack instruction string.
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1. Initialization. An initial repertoire (population), AB, of n antibodies, Abi,

i = 1, . . . ,n, is generated. The generation counter is set to G = 1.

2. Evaluation. An antigen, Ag, representing the problem to be solved, is pre-

sented. Ag is compared to all antibodies Abi 2 AB and their affinity, fi, with

respect to the antigen is determined.

3. Replacement. With a certain probability, Pr, a new antibody is generated
and placed into the new repertoire. This way, low affinity antibodies are

implicitly replaced. The parameter Pr is the probability of replacement.

4. Cloning. If a new antibody has not been generated, an antibody, Abi, is

drawn from the current repertoire with a probability directly proportional

to its antigenic affinity. With a probability, Pc, this antibody is cloned and

placed in the new repertoire. The parameter Pc is termed probability of

cloning.

5. Hypermutation. If the high-affinity antibody selected in the previous step has
not been cloned, it is submitted for hypermutation with a probability inver-

sely proportional to its antigenic affinity. If the antibody is selected for

hypermutation, each component of its attribute string is mutated with prob-

ability of mutation Pm.

6. Iteration–repertoire. Steps 3–5 are repeated until a new repertoire AB 0 of size

n is constructed.

7. Iteration–algorithm. The generation counter is incremented, G = G + 1, and

the new repertoire is submitted to step 2, evaluation. The process continues
iteratively until a stopping criteria is met.

4.2.1. Initialization

The initial repertoire of antibodies is generated by concatenating compo-

nents randomly selected from gene libraries [5]. In the IP algorithm these li-

braries contain instructions available in the instruction set of the underlying

computing architecture. For example, a simple instruction set for a stack-based
machine can contain the instructions described in Table 1.

The instructions from the instruction set are encoded for representation in

the attribute string m. As indicated in Table 1, non-negative integers have been
Table 1

Instruction set

Instruction Code Description

nop 0 No operation

dup 1 Duplicate the top of the stack (x ) x x)

swap 2 Swap the top two elements of the stack (x y) y x)

mult 3 Multiply the top two elements of the stack (23 ) 6)

add 4 Add the top two elements of the stack (23 ) 5)

over 5 Duplicate the second item on the stack (x y) y x y)
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selected to represent the instructions in the current implementation of the IP

algorithm, leading to an attribute string m 2 ZL. The greatest code number

has value r � 1, where r is the number of instructions in the instruction set.

Alternate representations are possible, including symbols, real numbers, etc.

Integers are chosen for code efficiency.

Theoretically, the length of the program is restricted only by limits of the
underlying hardware. In practical implementation, the length of the programs

can be variable or the length can be fixed to an arbitrary value corresponding

to the expected complexity of the problem solution. In the latter case, programs

of varying length can be obtained by padding with the nop instruction. Fol-

lowing the notation introduced in Table 1, the attribute string m = h1,3i repre-
sents the simple program

dup mult

Assuming a stack with value x on top, this program represents a solution to

the expression x2.

The size of the instruction set, r and the program length L, dictate the size of

the set of all antibodies available for encoding solutions (the available reper-

toire). This size, rL, needs to be large enough to ensure sufficient antibody

diversity. However, even with a small instruction set and limited program

length, the available repertoire is quite large. For example, assuming the
instruction set with r = 6 operations and program length L = 6, the available

repertoire is equal to rL = 66 = 46,656 variations.

At this point, an example is introduced to illustrate the operation of the

algorithm. As mentioned previously, a repertoire, AB, of n integer attribute

strings, m, is randomly generated during initialization. Let us assume that

n = 100 and program size is limited to L = 6. Let us consider the following five

antibodies from the entire repertoire

Ab1 ¼ h1; 3; 2; 5; 1; 3i;
Ab2 ¼ h4; 1; 2; 2; 3; 0i;
Ab3 ¼ h0; 2; 0; 5; 5; 5i;
Ab4 ¼ h3; 3; 4; 3; 3; 3i;
Ab5 ¼ h5; 4; 4; 4; 1; 2i.

These antibodies, themselves, are the strings corresponding to possible pro-

gram solutions.

4.2.2. Evaluation

At the beginning of each iteration, an antigen, Ag, representing the problem

to be solved, is presented. This antigen can take different forms depending on

the way the problem is described. For example, it can contain pairs of input–

output numerical values representing a desired mapping for which a program is
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to be found. Alternatively, it can take the form of an arithmetic expression for

which a code implementation is to be found. Let us assume that the second ap-

proach is used and that the antigen takes the form:

Ag ¼ x2 þ 2xy þ y2.

This antigen is compared to all antibodies in the repertoire and their affinity

with respect to the antigen is determined. For this purpose, the antibodies must

be first decoded to the program space, PG, and then evaluated for certain val-

ues from the input space.
The process of decoding is rather trivial and involves substitution of the

instruction names for the corresponding codes. Assuming the instructions set

from Table 1 and antibodies from the example introduced earlier, the corre-

sponding programs are

Pg1 ¼ dup mult swap over dup mult

Pg2 ¼ add dup swap swap mult nop

Pg3 ¼ nop swap nop over over over

Pg4 ¼ mult mult add mult mult mult

Pg5 ¼ over add add add dup swap

To evaluate the affinity of the antibodies, particular values of variable(s)

have to be placed on the stack and the programs have to be executed. Because

the problem is described in a symbolic form, no numerical argument values

are explicitly prescribed and they must be generated. For the antigen used

as an example, this corresponds to generation of x and y values. This leads
to two potential problems. First, if only a single set of arguments is used,

there is a chance that the program may provide a correct result for that spe-

cific case, but not correspond to the relation implied by the problem descrip-

tion antigen, Ag. For this reason, multiple sets of test values have to be

generated. The second problem stems from the inability to automatically gen-

erate arguments that would effectively cover the entire domain on which the

solution should be evaluated. This problem can be neglected for simple anti-

genic forms but must be considered for more complex cases. Alternatively,
this problem is avoided if the domain is specified explicitly along with the

description of the antigen.

The arguments for the example program evaluation are generated ran-

domly. The values of these arguments are restricted to 1-byte integer values,

[0, . . . ,255]. This restriction on the values, along with their actual representa-

tion using long integer (4-byte) containers, minimizes the chance of stack over-

flow. For this example, five sets of values x and y are generated to execute each

antibody and to compare the execution results to the antigens behavior. The
randomly generated values are x = [157,202,235,188,45] and y = [103,239,

234,105,228]. The results of executing the antibodies Abi are
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Pg1: ½607573201; 1664966416; 3049800625; 1249198336; 4100625�;
Pg2: ½67600; 194481; 219961; 85849; 74529�;
Pg3: ½157; 202; 235; 188; 45�;
Pg4: N=A;

Pg5: N=A.

Symbol N/A indicates that program failed to return a result. The antigen Ag

yields the values

½67600; 194481; 219961; 85849; 74529�.
Affinity can be determined by calculating the distance (for example, Euclid-

ean distance (1), p = 2) of the results of the generated programs, Pgi, from the

expected results defined by the antigen, Ag. Using this approach, the resulting

range of possible affinity values is very large and direct evaluation of programs

that do not execute correctly (e.g., programs Pg4 and Pg5) is not possible. To

overcome these difficulties, an alternate approach based upon a three-tiered

measure has been developed to consider three important properties of the gen-

erated programs:

Executability. If a program executes correctly (no program error, such as the

stack pointer pointing to an invalid memory address, is encountered), it is

assigned a score T1.

Completeness. If a program execution returns only a single value, score T2 is

added.

Correctness. If program execution yields result identical to the expected

result obtained by evaluating the antigen with the same set of arguments,

score T3 is added.

The tier scores are defined such that

T 1 < T 2 < T 3. ð2Þ
This states that correctness is more important than program completeness,

which is in turn more important than its executability. The tier scores are eval-

uated in sequence so only executable programs are evaluated for completeness,
and only executable and complete programs are evaluated for correctness. Par-

ticular values of the scores are not important as long as they satisfy the condi-

tion (2) for an arbitrary number of independent evaluations (sets of attributes),

c. For example, the scores can be defined as

T 1 ¼ 1;

T 2 ¼ cðT 1 þ 1Þ;
T 3 ¼ cðT 1 þ T 2 þ 2Þ;

ð3Þ
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leading to values T2 = 20 and T3 = 230 for c = 10. The overall affinity of each

antibody can be expressed as

fi ¼
Xc

j¼1

T 1ðPgi; argjÞ þ T 2ðPgi; argjÞ þ T 3ðPgi; argjÞ; ð4Þ

where argj is j-th set of arguments used for program evaluation.

In addition to clear separation of executable, complete, and correct pro-

grams, this affinity measure allows explicit determination of the maximum pos-

sible affinity needed for calculation of normalized affinity of each individual.

The maximum affinity for a given number of independent evaluations c is

f M ¼ cðT 1 þ T 2 þ T 3Þ. ð5Þ
Returning to the running example, the affinities fi and normalized affinities

f N
i of the generated programs have values f = [5,1255,5,0,0] and

fN = [0.004,1.0,0.004,0,0]. It can be seen that program Pg2 has relative affinity
f N
2 ¼ 1 and thus provides an executable, complete, and correct solution to the

problem defined by the antigen, Ag. The sequence of stack states correspond-

ing to the execution of this program is illustrated in Fig. 4.

This program is not optimal since the two swap operations following dup

do not change stack contents and could be omitted. It is desirable to exert

selection pressure on the algorithm to favor optimal, or generally shorter, pro-

grams. This is accomplished by including a term describing the length of the

program when calculating affinity. Eq. (4) thus becomes

fi ¼
Xc

j¼1

T 1ðPgi; argjÞ þ T 2ðPgi; argjÞ þ T 3ðPgi; argjÞ � kLa; ð6Þ

where La is the actual length of the program, and k is a constant of proportion-

ality. The actual program length La is obtained by discounting all occurrences of
the redundant instruction nop. The term �kLa is considered only for execut-

able, complete, and correct programs to avoid negative values of affinity. For

the antibodies Ab1, . . . Ab5 used as an example, the normalized affinities mod-

ified according to (6) have values fN = [0.004,0.98,0.004,0,0], considering k = 1.

4.2.3. Replacement

After the evaluation phase is complete, the relative affinity of all antibodies

Abi 2 AB is known, and the algorithm proceeds with generation of a new
(x+y)
(x+y)

(x+y)
(x+y)x+y

x+y

x+y

x+y

x+y

x+y

x+y

add swapdup swap mult nop
top of stack

stack growth

(stack)

Fig. 4. Sequence of stack states during execution of program Pg3.
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repertoire. This is an iterative process involving three major steps: replace-

ment, cloning, and hypermutation. The goal of the first step, replacement,

is to replace low-affinity antibodies present in the current population. As

the two subsequent steps are proportionally applied only to antibodies of

high affinity, replacement can take place by simply generating a new antibody

and placing it directly in the new repertoire. This replacement affects low-
affinity antibodies implicitly: these antibodies will not be considered for clon-

ing and mutation in subsequent steps and will not survive to the next

repertoire.

The process of replacement is implemented as follows. A random number

RAND 2 [0,1] is generated and compared to a parameter called probability of

replacement, Pr. If RAND 6 Pr, a new antibody is generated and placed in

the new repertoire and the algorithm proceeds to step 6, iteration–repertoire.

The process of generating new antibodies is identical to the initialization pro-
cess described in Section 4.2.1. If RAND > Pr, no antibody is placed in the new

repertoire and the algorithm proceeds to the next step. Please note that the

affinity f N
i is not explicitly considered.

Besides the implied replacement of low-affinity antibodies, a replacement

process implemented this way has two other important consequences.

First, computational resources are saved as there is no need to perform com-

parison of affinity for all antibodies in the current repertoire. This saving is

quite significant because a large portion of the current repertoire (about
50%) is typically replaced. Second, for the same value of replacement proba-

bility, Pr, a different number of antibodies is actually replaced depending on

the average affinity of all antibodies in the current repertoire. If a repertoire

contains a large number of high-affinity antibodies, the algorithm produces a

new repertoire in only a few iterations and the proportion of antibodies

actually replaced corresponds to the probability of replacement. If, on the

other hand, a repertoire contains only a small number of high-affinity

antibodies, the process of generating new repertoire will take significantly
more iterations and the proportion of antibodies actually replaced will be

greater.

To illustrate the process of replacement, let us consider an empty new rep-

ertoire, jAB 0j = 0, and probability of replacement Pr = 0.5. A random number

is generated, e.g., RAND = 0.0099, and compared to the probability of replace-

ment. As 0.0099 > Pr, a new antibody is randomly generated and placed in the

new repertoire. This leads to the new repertoire of size jAB 0j = 1 containing a

single antibody Ab0
1 ¼ h5; 2; 5; 0; 2; 4i. The algorithm then proceeds to step 6

(iteration–repertoire).

4.2.4. Cloning

When creating a new repertoire, if a new antibody has not been generated

(in step 3, replacement), an antibody, Abi, from the current repertoire, AB,
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is considered for cloning. The antibodies are selected in a sequential manner

starting from the beginning of the repertoire, i = 1.

The selected antibody is first examined for affinity. A random number RAND

is generated and compared to the relative affinity of the antibody f N
i . If

RAND 6 f N
i , the antibody is cloned and put into the new generation with prob-

ability of cloning Pc. This concludes the current iteration of creating the new
repertoire, step 6, and the algorithm returns to step 3 (replacement) unless

the new repertoire is complete, jAB 0j = n, in which case the algorithm proceeds

to step 7 (iteration–algorithm). If RAND 6 f N
i but Abi has not been cloned due

to the stochastic character of the cloning process, the antibody is submitted to

hypermutation.

There are two stochastic aspects of the cloning process. The first aspect, dri-

ven by affinity f N
i , ensures that mainly high-affinity antibodies are considered

for cloning. At the same time, low-affinity antibodies can be cloned but with
much smaller probability proportional to their affinity. The second aspect lim-

its the proportion of antibodies that are actually cloned to a portion, Pc, of the

high-affinity subpopulation.

To illustrate the process of cloning, let us consider the incomplete new rep-

ertoire created in the previous iteration. A new random number is generated,

e.g., RAND = 0.9501. As 0.9501 > Pr, a new antibody is not generated and the

process of cloning begins. The first antibody in the current population, Ab1,

is selected, and another random number is generated, e.g., RAND = 0.1389.
As this number is greater than f N

1 ¼ 0.004, the algorithm proceeds back to step

3, replacement, while setting the antibody pointer to 1.

After several iterations, the algorithm arrives at antibody Ab2. The newly

generated random number, e.g., RAND = 0.6038, is less than f N
2 ¼ 0.98. There-

fore this antibody is considered for cloning. The cloning actually occurs if the

next random number is less than the probability of cloning, Pc. Let us assume

Pc = 0.1 and RAND = 0.0538. In this case cloning is performed and the current

antibody, Ab2, is placed in the new repertoire. Assuming that another new anti-
body has been generated during the previous iteration(s), this leads to the new

repertoire of size jAB 0j = 3 containing antibodies Ab0
1 ¼ h5; 2; 5; 0; 2; 4i,

Ab 0
2 = h3,2,4,1,3,5i, and Ab0

3 ¼ h4; 1; 2; 2; 3; 0i. Please note that the antibod-

ies Ab0
1 and Ab0

2 are newly generated to replace low affinity antibodies in the

current repertoire AB, while Ab0
3 is an exact copy (clone) of the high-affinity

antibody Ab2 2 AB.

4.2.5. Hypermutation

If the high-affinity antibody selected in the previous step has not been cloned

(due to Pc), it is submitted to the process of hypermutation. This process walks

through the attribute string m = hm1,m2, . . . ,mLi 2 SL of the antibody, Abi,

and replaces each attribute mj 2 m with a new randomly-generated value. This

replacement is driven by the probability of mutation, Pm, so only a portion of
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the attributes is actually replaced. To make the probability of mutation inver-

sely proportional to the affinity of a given antibody, Pm is scaled by its normal-

ized affinity, f N
i , and bounded over the interval [0, 1]. The resulting probability

min½ðPm=f N
i Þ; 1� is used for the actual decision to replace a particular attribute,

mj, of the antibody Abi.

The hypermutation provides the algorithm with the ability to introduce new
material into the repertoire and expands the solution space searched. The in-

verse proportionality of hypermutation ensures that high-affinity antibodies

are disturbed only slightly while low-affinity ones are modified to a high extent.

In fact, for affinities less than or equal to the probability of mutation, hyper-

mutation is equivalent to replacement as all components of the attribute string

are exchanged with probability P = 1.

To illustrate the process of hypermutation, let us assume that there is an

incomplete new repertoire of size jAB 0j = 4 containing the following antibod-
ies: Ab0

1 ¼ h5; 2; 5; 0; 2; 4i, Ab0
2 ¼ h3; 2; 4; 1; 3; 5i, Ab3 = h4,1,2,2,3,0i and

Ab0
4 ¼ h5; 2; 3; 2; 3; 1i. Similar to the previous case, the antibodies Ab0

1, Ab0
2

and Ab0
4 are newly generated to replace low affinity antibodies in the current

repertoire AB, while Ab0
3 is an exact copy (clone) of the high-affinity antibody

Ab2 2 AB.

Let us further assume that in the current iteration replacement does not take

place and antibody Ab2 is again considered for cloning due to its high affinity.

This time the random number, e.g., RAND = 0.5161, is greater than the proba-
bility of cloning, Pc = 0.1, and cloning is not performed. Subsequently, the

antibody Ab2 is submitted for hypermutation. Each component mj of its attri-

bute string is mutated with probability Pm=f N
i ¼ 0.102 by generating a new

number. A sequence of L random numbers is generated, e.g., 0.4565, 0.0185,

0.8214, 0.4447, 0.6154, 0.7919. Only the second number in the sequence is less

than 0.102, and therefore only the second component of the attribute string is

replaced by a newly generated instruction code, e.g., 5. Subsequently, the new

antibody Ab0
5 ¼ h4; 5; 2; 2; 3; 0i is placed in the new repertoire.

4.2.6. Iteration–repertoire

Steps 3–5 (replacement, cloning and hypermutation) are repeated until a

complete new repertoire, jAB 0j = n, has been created. After an antibody, Abi,

has been selected in step 4 (cloning), its position, i, is marked using a pointer

so the following antibody, Abi+1, can be considered next time. This pointer

is set whether or not the i-th antibody has been actually cloned or mutated.

After the entire current repertoire has been considered, the pointer is reset to
i = 1 and the process continues until the new repertoire is complete. In this

way high-affinity antibodies can be cloned and/or mutated several times and,

consequently, their concentration in the new repertoire increases. At the same

time, low-affinity antibodies can be skipped several times and be implicitly re-

placed by newly generated ones.
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4.2.7. Iteration–algorithm

After the new repertoire has been constructed, the generation counter (set to

value G = 1 during initialization) is incremented, G = G + 1. The algorithm

then proceeds iteratively through steps 2–6 (evaluation, replacement, cloning,

hypermutation, iteration–repertoire) until a stopping criterion is met. The cri-

terion can take various forms: preset number of iterations, fitness threshold, or
no fitness improvement, etc. After the criteria is met, the resulting attribute

string is presented and can be decoded to provide a stream of instructions

for a stack machine to solve the problem described using the antigen, Ag, in

step 2.

4.2.8. Summary of IP algorithm

The algorithm of IP is based on the concept of evolving a repertoire of anti-

bodies that encode candidate solutions to a given problem. At the start, candi-
date solutions to the problem are randomly generated providing an initial

repertoire of adequate diversity. The evolution of the repertoire is driven by

cloning, hypermutation, and replacement of the antibodies. These processes

maintain the diversity of the repertoire and expand the space searched for solu-

tions. The choice of antibodies for these processes is facilitated by affinity-

based probabilistic selection: the antibodies with high affinity are selected for

cloning or hypermutation while the low-affinity antibodies are replaced.

Affinity evaluation provides a way of rating the quality of solutions pro-
vided by the individual antibodies. Based on the affinity values and algorithm

parameters, the selection decisions are applied to form a new repertoire. In

each iteration one antibody, at most, is placed in the new repertoire through

one of the operations of replacement, cloning or mutation. After the new rep-

ertoire has been created, the algorithm continues by repeated evaluation of the

antibodies and selection for cloning, hypermutation, or replacement. When an

antibody of maximal affinity is found, the algorithm stops and presents the

final result of the search process. The result is then decoded to the program
space and can be used as an implementation of the solution to the specified

problem.

The algorithm is summarized in a block diagram depicted in Fig. 5.

4.3. Results

To demonstrate the capabilities of the IP system, several experiments are

conducted with antigens in the form of arithmetic expressions. The instruction
set shown in Table 1 is considered, and although simple it can be used to solve

a variety of nontrivial problems.

To facilitate execution of the IP algorithm, a stack of a depth corresponding

to the number of variables in the user-entered expression is created. During the

run of the algorithm, values of variables are loaded in alphabetical order
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starting at the top of the stack. The algorithm itself is implemented exactly as

described in Section 4.2.
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The parameters used for the experiments are n = 100, Pr = 0.5, Pc = 0.1,

Pm = 0.2. The program size, L, is varied for the individual experiments. Besides

the form of the generated programs, the number of generations to arrive at the

solutions is recorded. Due to the stochastic nature of the algorithm, 10 inde-

pendent trials are conducted to avoid bias, and the results are averaged.

4.3.1. High-order operations

The first experiment is designed to examine performance of the IP system to

deal with operations of high order. The particular expression considered is x8.

The performance of the system varies according to the program size, L, as indi-

cated in Table 2.

It can be seen that the number of generations to find a solution is greatest

for the minimal program length, L = 6. This is caused by the iterative nature

of solutions to high-order operations. The shortest possible programs require
one unique sequence of instructions arranged in a repetitive pattern. Such

repetitive structures are more difficult to arrive at using randomly-generated

and mutated strings than heterogeneous ones.

The shortest possible program is of the form

dup mul dup mul dup mul;

corresponding to the expression x2
22

.
Longer programs of various forms evolved. Some of these are of the same

form as the shortest program, above, but padded with nop instructions or

other redundant sequences. Other trials produce functionally longer sequences,

such as

dup mul dup over over mul mul mul;

corresponding to the expression x2 Æ x2 Æ x2 Æ x2.

4.3.2. Multiple variables

The second experiment is provided to illustrate the ability of the IP system

to handle multiple variables. The particular case considered involves three vari-

ables x, y, z in expression x Æ y + y2 + z. The performance of the system for var-

ious values of L is summarized in Table 3.

The dependence of the number of generations to find a solution is reversed

and much milder than in the previous case. The heterogeneity of the expression
does not dictate repeating patterns in the solution space and such strings are

more likely to be generated or arrived at by random modifications.
Table 2

Performance of the IP system: high-order operations

Constrained program size, L 6 7 8 9 10

Number of generations, G 318.3 58.3 55.2 54.6 33.3



Table 3

Performance of the IP system: multiple variables

Constrained program size, L 4 5 6 7 8 9 10

Number of generations, G 10.7 14.6 10.9 17.1 15.9 26.8 43.4
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The shortest possible programs (L = 4) have the form

over add mul add;

corresponding to the expression (x + y) Æ y + z. Most successful longer pro-

grams are of the same form with added redundant operations, changed oper-

and order, or modified order of operators. For instance y Æ (x + y) + z

results in a different stack-based program than (x + y) Æ y + z.
Other trials lead to solutions representing expanded forms of the original

expression.

For example

over mul swap dup mul add add;

corresponds to the expression x Æ y + y Æ y + z.

4.3.3. Factorization

The goal of the third experiment is to verify whether the IP system is capable

of simplifying arithmetic expressions, e.g., by factorization. For instance, the

antigen expression x2 Æ y2 can be reformulated as (x Æ y)2. The performance of

the system for various values of L is summarized in Table 4. As in the previous

case, there is no strong dependence between the number of generations to find

a solution and the program length L.

The shortest possible programs (L = 3) have the form

mul dup mul;

corresponding to the expression (x Æ y) Æ (x Æ y)�(x Æ y)2. Indeed, when the size of

solution is constrained, the system is capable of factorization. Longer solutions

yield correct results but often without factorization. The two most common

solutions are

over over mul mul mul;

corresponding to the expression x Æ y Æ x Æ y, and

dup mul over mul mul;

corresponding to x Æ x Æ y Æ y.
Table 4

Performance of the IP system: factorization

Constrained program size, L 3 4 5 6 7 8 9 10

Number of generations, G 4.8 4.7 4.5 6.4 6.3 11.4 9.2 12



Table 5

Performance of the IP system: no simplification

Constrained program size, L 10 11 12 13 14 15

Number of generations, G 488.1 292.3 210.4 165.2 135.3 224
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4.3.4. No simplification

The fourth experiment examines the performance of the IP system while

solving more complicated expressions that cannot be further simplified. The

expression considered is x2 + y2 + x + y. The performance of the system for

program lengths L = {10,11,12,13,14,15} is summarized in Table 5.

There is a minimum of 10 instructions necessary to solve this expression in a

stack-based program. This increased minimal program length causes a signifi-

cant increase in the number of generations needed to find a solution. A variety
of solutions evolve for this expression, primarily differing in the sequence of the

instructions. A typical solution is

dup dup mul add swap dup dup mul add add;

corresponding to y2 + y + x2 + x. The repeated pattern in the solution (dup

dup mul add, in this case) leads to a large number of generations for minimal

program length.
5. Performance evaluation

To evaluate performance of the IP system, several additional experiments

are conducted to study the evolution of affinity and the sensitivity of conver-

gence to algorithm parameters. A comparison of the new system to its main

competitor, genetic programming, is also provided.

5.1. Evolution of affinity

The first experiment is designed with the aim of analyzing evolution of the

repertoire with respect to its affinity.

The expression x2 + y2 + 2 Æ x Æ y is considered for the experiment. The

parameters of the IP system are set to n = 100, Pr = 0.5, Pc = 0.1, Pm = 0.2,

where the Pr, Pc, and Pm parameters are selected based on the empirical results
from the sensitivity analysis in Section 5.2. The program size is set to L = 6.

The evolved instruction sequence for this expression is add dup mul. This

program corresponds to the expression (x + y) Æ (x + y)�(x + y)2, which is a

simplification of the original expression through factorization. In the trial

under examination, the system finds the solution in generation 20. In each gen-

eration an average of 51 antibodies are replaced, 8 cloned, and 38 instructions

are altered by hypermutation. Fig. 6 shows the growth of affinity during evo-
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lution of the solution. The plot shows gradual improvement of the maximum

affinity until generation 17 at which there is a step improvement in the reper-
toire�s maximum and average affinities. The maximum affinity of the popula-

tion then hovers near the highest affinity until generation 20 when the

problem is solved. The final ratio of average to maximum affinity is 72.06/

2513 = 0.03.

5.2. Sensitivity analysis

To examine the sensitivity of the IP algorithm with respect to its parameters,
the expression from Section 4.3.4 is considered: x2 + y2 + x + y. Varied param-

eters are listed, below, with their default values indicated in parentheses

Population size n (n = 1000),

Probability of replacement Pr (Pr = 0.5),

Probability of cloning Pc (Pc = 0.1),

Probability of mutation Pm (Pm = 0.2).

The program size, L, is kept constant at 10, and no limit is placed on the

number of generations. Similar to previous experiments, the results of ten inde-

pendent trials are averaged to avoid bias.

5.2.1. Effect of repertoire size, n

To examine the effect of repertoire size, n, its value is varied from 10 to 5000

in increments of 10. The number of generations required to produce the solu-

tion is plotted against the repertoire size in Fig. 7.
The shape of the curve corresponds to expectations: the greater the reper-

toire size, n, the lower the average number of generations, G, needed to arrive

at a solution.
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It is interesting to note that the algorithm converges and successfully finds

a solution even with an extremely small repertoire size, such as n = 10. This is

not possible with the GP algorithm, as discussed later in this section.

Although the number of generations required is relatively high (e.g., 30,000

for n = 10) the proportion of the solution space searched is small. There are

r = 6 instructions available and the program size is L = 10 yielding a search

space of size rL ¼ 610 _¼6� 107. The number of solutions actually considered

by the algorithm is G Æ n = 30,000 · 10 = 3 · 105, less than 0.5% of the solution
space.

5.2.2. Effect of probability of replacement, Pr

In this experiment, Pr is varied from 0.01 to 0.80 in increments of 0.01. The

number of generations required to produce the solution is plotted against the

replacement probability, Pr, in Fig. 8. The curve is of a �V� shape with the min-

imum around 0.55. This finding corresponds to replacement rates in biological

immune systems where a large number of cells are newly produced to replace
old cells. Despite the existence of an optimal value of the probability of replace-

ment, the algorithm is able to find a solution consistently across the entire

range Pr 2 [0.01,0.80].

5.2.3. Effect of probability of cloning, Pc

The probability of cloning, Pc, is varied from 0.01 to 0.99 in increments of

0.01. The number of generations required to produce the solution is plotted

against the replacement probability, Pc, in Fig. 9. Overall, the curve has an
increasing trend. There is, however, a minimum of G at a value of Pc around

0.1. Therefore, a relatively small portion of the repertoire is retained in subse-

quent generations. Larger values of Pc lead to stagnation of the algorithm due

to loss of repertoire diversity.
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5.2.4. Effect of probability of mutation, Pm

The value of Pm is varied from 0.01 to 0.99 in increments of 0.01. The

number of generations required to produce the solution is plotted against

the probability of mutation, Pm, in Fig. 10. The curve is of a �V� shape with

the minimum between 0.2 and 0.3. Please note that Pm affects the extent to

which hypermutation is applied to a selected antibody. The antibody is se-

lected based upon its affinity and the complement to the probability of

cloning.
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Fig. 10. Sensitivity of IP performance with respect to probability of mutation Pm. The solid line

connects results for individual values of the parameter and the dashed line represents values

averaged over an interval of size 0.1.
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5.3. Comparison of immune programming and genetic programming

To compare the performance of the IP system with the stack-based GP

algorithm, a stack-based version of the GP algorithm is implemented. To
allow an unbiased comparison, this implementation reflects the differences

between the two approaches but maintains the same method of generat-

ing test cases and evaluation of candidate solutions, as introduced in

Section 4.2.

The expression considered for this experiment is

x3 þ 3 � x2 � y þ 3 � x � y2 þ y3;

an expanded form of (x + y)3. The minimal program length to solve this

expression is L = 5:

add dup dup mul mul or add dup over mul mul.

The experiments are conducted for the minimal program length, L = 5, and

also for twice this length, L = 10. The stopping criteria is either success in find-

ing a solution or a maximum number of generations, Gmax = 1000. Each of the

experiments is repeated ten times and the results, listed in Table 6, represent the

average taken over all trials.

The table also relates the number of trials (as a percentage of the ten trials)
in which a solution is found within Gmax generations. This measure is provided

since in some trials neither algorithm finds a solution within the stopping cri-

teria. The average number of generations, G, to find a solution for 100% suc-

cessful sets of trials are set in a bold font.



Table 6

Comparison of convergence of GP and IP

L System Repertoire/population size n

10 50 100 200 300 400 500 1000 2000 5000

5 GP N/A N/A 506 154 87 39 36 10 3 1

0% 0% 20% 40% 60% 60% 60% 100% 100% 100%

IP 298 67 50 24 14 11 9 8 2 1

90% 100% 100% 100% 100% 100% 100% 100% 100% 100%

10 GP N/A 468 266 103 130 130 32 10 2 2

0% 40% 60% 60% 90% 90% 90% 100% 100% 100%

IP 553 76 30 28 17 18 19 8 2 2

90% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Each cell displays the average number of generations, G, to find a solution and the percentage of

trials that found a solution within Gmax = 1000.
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The overall trend of the dependency between the population/repertoire size,

n, and the number of generations to find a solution, G, corresponds to the find-

ings described earlier in Section 5.2.1. For a relatively large repertoire/popula-

tion, n > 1000, both systems perform comparably well, in that they are both

able to find a solution within 10 generations or less. For a smaller repertoire

size, however, immune programming is clearly superior not only in terms of

the average number of generations needed to find a solution, but also in the

ability of the algorithm to find a solution within a restricted number of itera-
tions. GP is not able to find solutions in all trials for any population of size

smaller than 1000. The IP algorithm, on the other hand, achieves complete suc-

cess for populations as small as n = 50. Even for n = 10 the IP algorithm is able

to find a solution in 90% of trials.

The ability of IP to perform successfully with small populations can be

attributed to the way in which the algorithm maintains repertoire diversity.

This diversity is introduced during initialization steps which are analogous to

GP population initialization. However, in IP diversity is subsequently main-
tained via replacement and mutation. Additionally, due to the affinity-based

selection process, replacement and mutation rates are self-regulatory in that

the lower the average affinity of a repertoire, the larger portion of antibodies

of the repertoire are replaced or extensively mutated.
6. Conclusions

This paper introduced a new paradigm of evolutionary computing entitled

�Immune Programming� (IP). As an extension to Artificial Immune System
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(AIS) concepts, IP is a systematic, domain-independent method to intelligently

solve programming problems with no human interaction.

The problem to be solved is described by an antigen, and a set of candi-

date solutions is described by a repertoire of antibodies. Each antibody con-

tains a string representing a sequence of stack-based assembly instructions,

the set of which is analogous to gene libraries in immune systems. Randomly
generated at initialization, the antibody repertoire is evaluated against the

problem specification and a measure of its fit, affinity, is derived by executing

each program corresponding to an antibody on a virtual machine. If affinity

relates that a solution is not contained in the repertoire, the algorithm pro-

ceeds by creating a new generation of antibodies through replacement, clon-

ing, and hypermutation processes. Application of a specific process is

governed by an antibody�s affinity and a set of probabilistic parameters. Pro-

cessing continues until a solution is found or a predefined stopping criteria is
attained.

Convergence of IP is superior to stack-based GP for the problems tested:

successful solutions are found in fewer generations with the most dramatic

improvement evident when using a small antibody repertoire. Additionally,

IP converges in situations that cannot be handled by GP, arising from IP�s
inherently improved repertoire diversity. Sensitivity of IP�s convergence with

respect to algorithm parameters is explored in this paper�s body. The general-

ization capabilities of the system are demonstrated by its capacity to provide a
variety of alternative solutions to a given problem.

Still in its infancy, IP is showing great promise. Application to new problem

areas is a natural extension of this body of work and is planned for the near

future. Improvements to performance (convergence) are also planned,

including

• modification of the algorithm to operate on repertoire in a deterministic,

rather than probabilistic, manner;
• exploitation of the inherent memory of the modeled immune system by

evolving a repertoire over a set of similar programming problems;

• increase of gene library (instruction set) size, perhaps to include instructions

performing flow-control; and

• modification of or addition to hypermutation techniques to model mutation

processes found in biological systems and to reflect the nature of many pro-

gramming problems.

As an example of the latter, the iterative nature of many programs could be

accommodated by an antibody structure with repeated instruction sequences.

A hypermutation algorithm supporting this concept is expected to provide fas-

ter convergence.
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