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Abstract— This paper describes an enhanced learning classifier
system used to evolve obstacle-avoidance rules used in mobile
robot navigation. The robot learns these rules via feedback
from the environment, available as sonar readings. Conventional
classifiers, when used in this application, show evidence of
shortcomings: becoming trapped in local minima, loss of (desir-
able) rules, and favouring of generalized rules. Enhancements
to the classification system are described and tested using a
simulated robot and environment. The enhancements prove to
be worthwhile in that they overcome the limitations, and can
generally handle more complex situations.

Index Terms— Robot, Navigation, Learning Classifier Systems,
Reinforcement Learning, Genetic Algorithms

I. INTRODUCTION

This paper describes a method to automatically develop
behaviours used to guide an autonomous mobile robot through
unfamiliar environments. This navigation problem proves to be
difficult to solve using a machine-learning approach and, as
such, much of the work in the past few decades concentrates
on the use of artificial intelligence (AI) techniques. This paper
explores an alternate, sophisticated technique wherein robot
intelligence is evolved rather than designed. The focus of
the work is in the area of evolutionary robotics (ER) [1]
wherein evolutionary computing methods are used to evolve
populations of controllers for use in autonomous robots. In the
evolutionary computing domain, a classifier system (CS) is a
machine-learning system that evolves rules in order to perform
effectively in a dynamic environment [2].

Autonomous mobile robots can be programmed to learn
through experience. The relation between a robot and its
environment can be described by condition-action rules in
which the conditions represent the environmental messages and
the actions modify the environment. Consequently, learning
is the process of discovering an appropriate set of rules.
Implementing such a learning algorithm is difficult on mobile
robots since they usually operate unsupervised and therefore
have need to evaluate their actions according to feedback from
the environment. This feedback provides a measure of the
extent to which a need is satisfied. It is realistic to assume that
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the robot has limited memory for storage of experiences and
must therefore learn incrementally without direct storage of
events in their original form [3]. Various techniques have been
developed to execute rapid online modifications to a robot’s
behaviour. The main contributions in this area can be grouped
into three paradigms: artificial neural networks, fuzzy systems,
and evolutionary computing.

An artificial neural network (ANN) imitates the adaptive
abilities of a biological neural system [4] and is promising for
use as a mobile robot controller. An ANN designed to accom-
plish mobile robot navigation typically consists of numerous
simple elements connected in parallel to map sensory inputs to
robot actuator commands. Most such systems use multi-layer
feedforward networks [5]. If the number of inputs is small,
such a network can be trained effectively. However, for large
input spaces, as in the case of mobile robot navigation, its
performance decreases [6]. Multi-layer feedforward networks
are suited for supervised learning scenarios, making on-line
incremental learning impossible.

Fuzzy systems can alleviate many problems in real robotic
systems in which knowledge of the environment is partial or
approximate, sensing is noisy, and/or the dynamics of the
environment can be only partially predicted. Fuzzy control
systems [7], [8] bring many advantages to the design process
including simplicity and the ability to deal with uncertainty.
They express and implement human knowledge in the form
of linguistic rules that can be applied to robot control. In [8],
a simple fuzzy controller handles complicated situations, al-
lowing the robot to avoid obstacles detected by sensors.
Although fuzzy controllers are simple to design and faster to
prototype than conventional control systems, they require more
simulation and fine-tuning before they are usable. In addition,
they do not have an inherent ability to adapt which further
reduces their usefulness in systems exposed to a dynamic,
changing environment, unless augmented by an appropriate
learning mechanism.

Evolutionary Computing (EC) is the general term describing
a family of computational techniques based on evolution in the
natural world. ER applies EC methods to evolve populations
of robot controllers. The fundamental goal of ER is to develop
automatic methods of autonomous mobile robot controller
synthesis that do not require hand design or in-depth human
knowledge of the robot task. A large amount of experimental



research in the ER area [9], [10] has lead to synthesis of
controllers that produce desirable complex behaviours.

As one of the EC techniques, learning classifier systems
have received much attention in recent years. The original
CS concept was proposed by Holland [11] to model natural
evolutionary processes and provides flexible operation with
mechanisms for structural adaptation. Classifier systems appear
to offer a broadly useful framework for addressing problems
in mobile robotics [3]. However, only a few research studies
have applied classifier systems to the problem of mobile robot
navigation [12].

This paper is organized as follows. Section 2 provides an
introduction to conventional classifier systems. The application
of learning classifier systems to robot navigation is described
in Section 3, along with experimental results showing short-
comings of conventional CS. In Section 4, several extensions
are proposed to overcome these limitations and their benefits
are demonstrated using additional experiments. Section 5 con-
cludes the paper and provides an outline of future work.

II. CONVENTIONAL CLASSIFIER SYSTEMS

The learning classifier system is a machine-learning system
with strong learning capabilities. The system assimilates a
perpetual stream of information about the environment and
creates a set of competing rules without significantly disturbing
those already obtained. CS is normally applied to situations
that possess one or more of the following challenges [13]:

• information about the environment is available as a stream
of potentially noisy and/or irrelevant data;

• instantiation of action needs to be continuous, and perhaps
real-time;

• goals are inexactly or implicitly defined; and
• payoff is sparse in that long sequences of actions occur

between reinforcement.
In the face of these complexities, classifier systems receive

information about the environment, perform internal process-
ing and then provide an action which has a perceived effect
on the environment. Subsequent feedback relating the effects
the system has had on the environment is used to modify the
classifier system’s internal structure and parameters: the system
effectively learns from experience.

The theory of learning classifier systems is fairly new. Two
approaches have been developed: the Michigan approach [14]
and the Pittsburgh approach. In the Michigan approach, an
individual of an evolutionary algorithm population encodes a
single rule, whereas in the Pittsburgh approach each individual
represents an entire set of rules for the problem at hand
[2]. This paper employs the Michigan Approach which has
undergone more development. The approach has three major
components: a rule and message subsystem, an apportionment
of credit subsystem, and a rule discovery mechanism [15].
Fig. 1 shows a block diagram of a classifier system.

A. Rule and Message Subsystem

Detectors collect information from the environment and cod-
ify it into messages that the classifier systems can recognize.
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Fig. 1. Block diagram and data flow of a typical classifier system.

In the simplest version, all messages are of fixed length in
a specific alphabet (typically k-bit binary strings [15]). Each
classifier in the classifier population consists of a rule in the
usual condition/action form. It has one or more conditions as
the antecedent, drawn from the ternary alphabet (0, 1, #), an
action part as the consequent composed of a binary string (0,
1), and an associated strength. The symbol ‘#’ in the condition
is a “don’t care” and can assume a value of either ‘0’ or ‘1’.
The more “don’t cares”, the more general the rule. The number
of non-‘#’ symbols in the antecedent, relative to its length,
represents the specificity, fi, of a classifier rule. The strength
portion of the rule provides a measure of how well the rule
has performed: the higher the strength the better the rule’s
performance and the more likely it is to be used when its
condition matches an environmental message.

After the message from the environment is encoded, all
classifier rules in the population are matched against the
message. If the entries at all non-‘#’ positions match, the
message satisfies the condition. Every rule in the population
that matches the environmental message is sent to the appor-
tionment of credit subsystem.

B. Apportionment of Credit Subsystem

The apportionment of credit subsystem is responsible for
modification of rule strengths as the system learns [15]. All
classifier rules that match the environmental message compete
in an auction to determine the individual that will have an
effect on the environment. The winning rule’s action could be
beneficial or detrimental to the environment. Feedback is used
by the apportionment of credit subsystem to appropriately re-
inforce or punish the winning rule by increasing or decreasing
its strength.

A classifier rule’s bid is a function of its strength and
specificity. The bid of rule i at iteration t, Bi(t), is calculated
as:

Bi(t) = ρSi(t)fi (1)

where ρ is a parameter that acts as an overall risk factor
influencing what proportion of a rule’s strength will be bid
(and possibly lost) in a single step, 0 < ρ ≤ 1; Si(t) is the



current rule strength; and fi is the specificity, 0 ≤ fi ≤ 1.
Eq. (1) indicates that highly specialized rules with values of
fi close to 1 are preferred over general rules.

After all bids for rules in the matching pool are calculated,
the winner of the auction is determined by selecting the
individual with the highest bid. As in a real auction, the winner
pays for the privilege to perform its action by decreasing its
strength by the amount of its bid [15]. Other classifier rules
that participated in the auction but did not win save their bids
and their strength is not affected.

The strength of the winning classifier rule, Ci(t), at the end
of iteration t is:

Si(t + 1) = Si(t) + Ri(t) − Bi(t) (2)

where Ri(t) is the reward from the environment at iteration t.
Because the action caused by the winning rule could be ben-
eficial or detrimental, the reward Ri(t) will correspondingly
hold a positive or negative value.

Two types of taxes, Taxlife and Taxbid, are used to prevent
the classifier population from being cluttered with individuals
of little or no utility having artificially high strengths. For
individuals that don’t match a message in the current iteration,
a fixed rate tax Taxlife is levied. Suppose a rule is inactive for
n consecutive iterations. The strength is modified according
to:

Si(t + n) = Si(t) ∗ (1 − Taxlife)
n (3)

For rules that do not win the auction but are in the current
matching pool, a fixed rate tax Taxbid is applied to penalize
their generality. Therefore, after n iterations of losing, a
classifier rule has the strength:

Si(t + n) = Si(t) −
n∑

j=0

Taxbid ∗ Bi(t + j) (4)

The general strength update equation can be obtained by
combining Eqs. (2)-(4):

Si(t + 1) = (1 − Taxlife)Si(t) + Ri(t) − Taxbid ∗ Bi(t) (5)

For the winning rule, Taxlife is set to 0 and Taxbid to 1. For
non-winning rules in the matching pool, Taxlife is set to 0
and Taxbid to a fixed rate less than unity. Conversely, for non-
matching rules, Taxbid is set to 0 and Taxlife is set to a fixed rate
less than unity. Reward Ri(t) is received by only the winner
and is equal to zero for the remaining rules, while bid Bi(t)
is determined by Eq. (1) for all those in the matching pool.

C. Classifier Discovery Subsystem

After a number of classifier system iterations, a genetic
algorithm is applied to produce the next generation of rules.
Based upon genetic operators, the search process is directed
along trajectories influenced by the (above-average) strength
of the current classifier population. The genetic algorithm
normally selects the rules with greater strength and pro-
motes reproduction among them. The offspring generated are
launched into the next generation to compete with their parents

TABLE I

ENCODING OF ROBOT TURNING ANGLE.

Turning angle Codes Probability
Left 15◦ 1100 0.0625
Left 10◦ 1000, 1110 0.125
Left 5◦ 0100, 1010, 1101 0.1875
0◦ 0000, 0110, 1001, 1111 0.25
Right 5◦ 0010, 0101,1011 0.1875
Right 10◦ 0001, 0111 0.125
Right 15◦ 0011 0.0625

and other individuals. If the new classifier rules are more
effective in gaining payoff, they will survive and replace the
weakest individuals in the population.

III. CONVENTIONAL CLASSIFIER SYSTEM FOR ROBOT

NAVIGATION

In this section, a conventional classifier system used for
robot navigation is described. The objective is to move the
robot in its environment while avoiding obstacles. It is ex-
pected that this objective will be realized after a learning stage.

The robotic platform used in the experiment is a Pio-
neer 2DX simulated in the SRI robotic simulator. In the
simulator, the robot is equipped with 16 sonars and controlled
by the motor commands provided by the learning classifier
system. Two types of simulated environments, the pilaster and
polygon environments, are adopted to test the robot’s perfor-
mance. The pilaster environment is drawn in the same form
as in [12] to allow qualitative comparison. No comparison of
learning time is provided since the simulators and computing
platforms differ. The major concern is whether the robot is
learning or not, and the robot trajectories are sufficient for
such assessment.

A. Representation: Encoding and Decoding

All learning systems need to represent real-world knowledge
in a form that can be manipulated and classifier systems are no
exception. In the case of robot navigation, 16 sonar signals are
continuously transformed into binary values by a thresholding
process.

To translate the action of a classifier rule into usable motor
commands, a decoding mechanism is introduced. The robot’s
actions are determined by three effectors (represented by six
bits): one to control the turning angle (in four bits), another to
control the speed (as a single bit), and the third to control
the forward/backward direction of travel (as a single bit).
The turning angle is expressed in increments of 5◦ using
a 4-bit binary code as shown in Table I. This symmetrical
coding scheme has more entries for actions with smaller turns,
increasing the probability that the robot will move ahead.

The total length of each rule is 22 bits plus an integer
strength value. The rule population is initialized using a uni-
form random distribution by filling all positions (conditional
parts with 0, 1, and #; action parts with 0 and 1). A population
size of 400 is used, and the initial strengths of all rules are



set to a common value Si(0)=100. An example of a complete
classifier rule is shown here:

10#1000#11#0##10 1011 0 1 99
Conditional part to Turn Angle Speed Direction Strength

match the sonar inputs (Right 5◦) (Slow) (Forward)

B. Credit Assignment Algorithm

The credit assignment cycle starts with the matching pro-
cess. The winning rule is selected from the pool of matches
using the bids calculated by Eq. (1) with the risk factor ρ set
to 0.5. The probability of selection of a rule is equal to its bid
divided by the sum of bids of all rules in the matching pool.

To handle situations when no rule matches the input, the rule
creation process [3] is used. The conditional part of a newly
created classifier rule is a copy of the current input string,
except that # symbols are inserted with a probability equal to
the current percentage of all “don’t cares” in the population.
The action of the new rule is set randomly, and its strength is
set to the mean strength of the current population. To make
room for the newly created rule, one rule is deleted from the
population according to the probability distribution over the
inverse of the strengths of all rules.

The reinforcement component adjusts rule strengths ac-
cording to the payoff received from the environment after
performing an action. A reward is distributed to the winning
rule, and its strength is reduced by the amount of its bid, Bi,
as in Eq. (2). All other rules are updated by Eq. (5) with Taxbid
and Taxlife both set to 0.5.

C. Rule Discovery Algorithm

The genetic algorithm is invoked after a number of collisions
has occurred [12]. In this experiment, the genetic algorithm is
invoked after 10 collisions.

A classifier rule Ci in the population is selected using a
probability distribution over the strengths of all rules in the
population. With a probability of crossover Pc, classifier rule
Ci is submitted to one-point crossover with each rule in the
population. Each of the parents’ strengths are reduced by one-
third and the offspring’s initial strength is set to the sum
of the reductions. With a probability of mutation Pm, the
mutation operation is applied to each individual. The strength
of offspring resulting from mutation is not changed. When an
offspring is added to the population, a rule is deleted using a
probability distribution over the inverse of the strengths of all
rules to keep the size of the population constant.

In summary, the genetic algorithm chooses higher-strength
classifier rules to reproduce and generates new individuals by
their recombination and mutation. In the experiments, Pc is set
to 0.7 and Pm to 0.025. The value of Pm is slightly lower than
typical to limit disruption of effective rules in the population.

D. Experimental Results

A simulated robot and environment are used to verify the
algorithm. Fig. 2 shows the trajectory at the beginning of
learning. Many collisions occur during learning at which time

the classifier system receives high penalties that will be used
to improve its performance. After the learning stage, the robot
finds equilibrium in an almost circular orbit around a pilaster
as shown in Fig. 3, similar to the results reported in [12].

Fig. 4 is a graph showing the number of iterations between
collisions during the learning phase before the robot converges
to the circular orbit and no more collisions, hence no more
learning occurs: the time between collisions is increasing
which indicates that the robot is learning.

IV. ENHANCED CLASSIFIER SYSTEM FOR ROBOT

NAVIGATION

Based on the results described in the previous section, it is
apparent that the conventional classifier system provides the
robot with the ability to learn. However, there are problems
that significantly affect the system performance.

Local minima. The robot actions quickly converge to the
same circular orbit. The problem arises because the robot
ceases to learn new rules and dwells in a local minimum.
Some rules dominate the rule base as the winning strengths
keep growing and, consequently, the population develops
monotonous rules that recognize only a few input messages.

Rule destruction. As the number of environmental messages
increases, so does the complexity of the learning task. How-
ever, the population size cannot be increased without limit
to address this increased complexity due to the associated
increase in execution time. The resulting effect is that some
good rules are replaced with new ones and therefore the
system cannot distinguish between a sufficiently large number
of classes [16].

Generalization. The rule-discovery process tends to produce
a number of general rules that are undesirable when attempting
to discriminate between many sonar inputs. If the conditional
portion of a rule is too general, it may not provide an action
appropriate to the input, even though the conditions are met.

A. Enhanced Classifier Systems

To address the problems mentioned above, the following
enhancements are proposed and implemented.

Escaping from local minima. As mentioned earlier, the
criteria to engage the genetic algorithm is the number of
collisions. However, once the system converges to equilibrium
(e.g. a circular orbit), the rule discovery process is not activated
further since no collisions occur. To allow escape from local
minima, it is proposed that the genetic algorithm be invoked
after a certain number of iterations rather than only upon robot
collision.

To decrease the probability of disruption of good rules,
the number of iterations between applications is increased
as the system learns. Because most rules at initialization are
inappropriate, applying the genetic algorithm helps the system
find the right rules. However, as time progresses, most rules
in the rule base are correct and application of the genetic
algorithm need not (and should not) be as frequent.

Rule protection. Inspired by the work of McAulay and
Oh [16], “No-replace” and “No-parent” flags are applied to



Fig. 2. The trajectory of the robot at the
start of learning (pilaster environment).

Fig. 3. The trajectory of the robot in the
equilibrium state (pilaster environment).
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Fig. 4. Number of iterations between collisions
(pilaster environment).

index classifier rules that have high strength and provide
appropriate action. These rules will not be replaced in later
generations and will not become a parent in the next genera-
tion, preventing good rules from being replaced and groups of
similar rules from dominating the rule base.

Specialization. To handle rules that are too general, a special
genetic algorithm is applied to those that provide incorrect
action. The genetic operators are only applied to the action
part, while the condition part is replaced by the current sonar
inputs. This way, a new specialized rule is created with exact
environmental inputs and a new action.

The CS enhanced using the proposed modifications provides
encouraging results. During the learning stage, the robot learns
while exploring the entire environment, as shown in Fig. 5.
Fig. 6 shows the robot’s path after the learning stage: no
collisions occur. Fig. 7 shows the number of iterations be-
tween collisions while learning. The graph in Fig. 7 is more
oscillatory because of the higher complexity of the polygon
environment with respect to the pilaster environment. Once a
collision occurs, several other collisions follow closely while
the specialization enhancement creates a new action with
an updated conditional. If the action of the current winning
rule is appropriate, the robot moves away from the obstacle.
Otherwise, the robot will approach the obstacle again, and the
specialization process restarts.

V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, a classifier system has been applied to mobile
robot navigation. Experiments show that conventional classifier
systems can handle only simple and symmetric environments
and the system converges to a limit cycle exhibiting circu-
lar movement. To allow operation in a more complex and
asymmetric environment, extensions to conventional CS are
proposed to enhance its performance.

Efficient use of the rule base to match as many messages
as possible will be studied to reduce the similarity of the con-
ditional parts of rules in the population. In addition, reduction
of the learning period by introduction of a-priori knowledge
into the initial classifier population will be considered.

Fusion of learning classifier systems and neural networks
has been examined by Smith [17]. This work shows that a

genetic algorithm is able to evolve a compact, functional,
LCS-like neural network with co-adapted, cooperative hidden
layer nodes. The co-adaptive approach seems to have many
computational advantages. Future work will focus on how
to map the learning classifier systems into neural networks
to harness a combination of the structural learning ability of
classifier systems and the continuous adaptive characteristics
of neural networks.
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