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Abseacf-Design of high-level control systems for 
autonomous agents, such as mobile robots, is a challenging task. 
The complexity of robotic tasks, the number of inputs and 
outputs of such systems and their inherent ambiguity preclude 
the designer from finding an analytical description of the 
problem. Using the technology of fuzzy sets, it is possible to use 
general knowledge and intuition to design a fuzzy coutrol system 
that encodes the relationships in the control domain into the form 
of fuzzy rules. However, control systems designed in this way are 
severely limited in size und are usually far from being optimal. 
In this paper, several techniques are combined to overcome sncb 
limitations. The control system is selected in the form of a 
general fuzzy rule based system. Antecedents of this system 
correspond to various situations encountered by the robot and 
are partitioned using a fuzzy clustering approach. Consequents 
of the rules describe l u n y  sets for change of heading necessary to 
avoid collisions. While the parameters of input and output fuzzy 
sets are designed prior to robot engagement in real world, the 
rules to govern its behaviour are acquired autonomously 
endowing the robot with the ability to continuously improve its 
performance and to adapt to changing environment. This process 
is based on reiuforcement learning that is well suited for on-line 
and real-time learning tasks. 

Index Term-Robotics, Navigation, Fuzzy Control, Fuzzy 
Clustering, Reinforcement Learning. 

I. INTRODUCTION 

The navigation task for autonomous mobile robots involves 
traversing unfamiliar environments while avoiding obstacles 
and dealing with noisy, imperfect sensor information. While 
several control schemes have been developed to accomplish 
the navigation task, the behaviour based control paradigm 
continues to be an essential element of autonomous mobile 
robot navigation. Behaviour based controllers often 
incorporate reactive control schemes that use range sensors 
such as sonar and ladar to provide responsive control in 
dynamic and uncertain environments. 
Fuzzy logic control is well suited for behaviour based 
approaches towards navigation as it can be made robust 
against sensor noise and imperfect odometry, and fuzzy 
behaviours have been implemented in many successful 
autonomous navigation systems [IO]. However, while fuzzy 
logic behaviour based design can produce good performance 
in the navigation task, the design of fuzzy behaviours often 
involves an ad-hoc trial and error approach that is inflexible 

and time consuming to implement. In recent research, the 
adoption of learning strategies such as evolutionary and 
reinforcement learning has attempted to address this problem 
by automating the design of low level behaviours and 
behaviour integration [4], [14]. However, the large state space 
involved in mobile robot navigation often slows the learning 
of navigation tasks, and attempts to lower the dimensionality 
of the state space by grouping input data using expert 
knowledge just shifts the element of ad-hoc human input from 
one design stage to another. 
Another way to reduce the state space dimensionality is to 
cluster input data using a fuzzy clustering algorithm, so that 
the resulting fuzzy clusters can then be considered as fuzzy 
states by the learning algorithm. Input clustering approach to 
learning obstacle avoidance behaviours is presented in this 
paper. First, sonar data from sample indoor environments are 
partitioned with a fuzzy clustering algorithm. The resulting 
partitions may not correspond to the state space partitions that 
a human expert would use, but they would provide a good 
description of typical situations the robot will encounter in its 
environment. In the learning stage, each fuzzy state is 
associated with an action to be taken in that state; and a 
reinforcement learning algorithm is used to associate 
punishments generated from obstacle collisions to the 
state-action pair that caused the collision so that over several 
iterations an optimal obstacle avoidance policy is learned. 
The paper is organized in five sections. Section I1 summarizes 
background knowledge of the navigation problem, fuzzy rule 
based systems, 'clustering, and reinforcement learning. The 
proposed fuzzy situation based navigation system is described 
in Section 111 and results obtained in simulation are presented 
and analysed in Section IV. Finally, Section V brings main 
conclusions and indicates possible directions of future work. 

11. BACKGROUND 

A.  Navigation Problem 
The basic task of an autonomous mobile robot is to navigate 
safely to a specified goal location. The high level problem of 
goal seeking is that of selecting strategies to specify the goals 
and of planning routes from a current position to these goals. 
The other aspect of navigation, safety, can be handled by 
various methods of obstacle avoidance. 
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Obstacle avoidance typically uses information about robot's 
immediate surroundings to choose action (e.g. turning) 
appropriate to avoid obstacles in the environment. Such 
information is provided by the means of robot's sensory 
subsystem, equipped e.g. with proximity sensing devices. 
Pioneer 2DX robotic platform considered in this paper has 8 
sonar sensors spaced nearly evenly from -90 degrees to 90 
degrees around its front side (cf. Figure 1). 
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Fig. I Sonar configuration on mobile robotic platform Pioneer 2DX 

B. Fuzzy Clustering 
Clustering, or cluster analysis, is a technique for partitioning 
and fmding structures in data [6]. By partitioning a data set 
into clusters, similar data are assigned to the same cluster 
whereas different data should belong to different clusters. 
While it is possible to assign each data-point strictly to only 
one cluster, such crisp assignment rarely captures the actual 
relationship among the data, i.e. real data-points can to some 
degree simultaneously belong to several clusters. This leads to 
the formulation of fuzzy clustering [2], where membership 
degrees between zero and one are used instead of crisp 
assignment of the data to clusters. In addition to better 
conformity, fuzzy clustering provides ability to interpolate 
between the cluster prototypes. This latter property is very 
important when considering clustering in connection with 
rule-based systems as described in the following section. 
Fuzzy c-means clustering algorithm [Z] is a commonly used 
method of fuzzy clustering. It is based on the minimization of 
an objective function J with respect to U, a fuzzy partition of 
the data set, and V, a set of c prototypes 

where uii denotes membership of data-point 4, j e [ l , n ]  in 
cluster V ,  ie[l ,c] ,  m2l is partition order, and 1/*11 is any norm 
expressing the similarity between measured data and 
prototypes (e.g. Euclidean distance). Fuzzy partition is 
obtained through iterative optimization of (I) with the gradual 
update of memberships uii and cluster centres Vi. 

C. Fuzzy Rule Base Systems 
Fuzzy rule based systems (FRBS) can be used to extend 
conventional approach to mobile robot navigation using the 
notion of fuzzy behaviours [14]. Fuzzy behaviours associate a 
soft condition with an appropriate fuzzy action. For example, 
a fuzzy behaviour for avoiding an obstacle in front of the 
robot could be described using the following rule: 

IF there is an obstacle close to front-left of the robot, 
THEN turn right slightly. 

The labels dose and slightly make the behaviours fuzzy and 
endow the underlying fuzzy control system with the ability to 
interpolate between the discrete cases described by a l i t e d  
number of rules. 
D. Reinforcement Leaming 
Reinforcement learning problem require online learning and 
dynamic adjustments in order to search for optimal methods 
and actions. Some examples include adaptive control systems, 
game playing machines, an autonomous robot navigation and 
exploration. Search heuristics such as genetic algorithms, 
genetic programming, or simulated annealing have been 
previously applied in solving such problems. However, they 
lack in the sense that they cannot learn while interacting with 
its environment and update itself accordingly. Instead a more 
general machine learning technique based on positivehegative 
reinforcement and trial and error interactions with the 
environment is efficient. It is favoured for its generality and 
similarity to how humans think and learn on a higher level - 
through experience. Sutton describes reinforcement learning 
as a computational approach to understanding and automating 
goal-directed learning and decision-making [lo]. The learning 
agent determines which actions yield the most rewards in a 
particular environment by exploring and performing several 
different actions repeatedly thus learning which actions to 
exploit. Reinforcement learning is a continual combination of 
exploration and exploitation. A progressive combination of 
the two should be performed to continually evaluate and 
improve the agent. 
A reinforced learning environment consists of a set of defmed 
attributes. The actions are the vruying methods the learning 
agent explores in order to determine the optimal actions. The 
reward function defines the desired goal of the learning 
problem. The value function defmes which actions produce 
the highest rewards in the long run or after several states, as 
opposed to which actions produce the highest rewards in the 
immediate state. The policies determine how the learning 
agent evaluates and responds to the rewards and values 
measured. It may defme, perhaps with a set of stimulus- 
response rules, when and how to explore and exploit actions. 
Finally, the model is used simply to " i c  the behaviour of 
the environment. 

111. FUZZY SITUATION BASED NAVIGATION 

The proposed navigation system is based on FRBS that 
performs mapping fiom the space of situations that the robot 
can encounter to the space of actions the robot can perform. In 
system described here, the antecedents of the rules correspond 
to situations obtained through the fuzzy clustering of robot's 
sensory space, while the consequents express the turning 
angle corresponding to the change of robot's current heading. 
The rules themselves are obtained autonomously through the 
process of reinforcement learning. The overall structure of the 
navigation system is illustrated in Figure 2. 
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The system is composed of four major subsystems: 
fuzzification, rule base, defuzzification, and reinforcement 
learning. Although the system is currently using off-line 
clustering, it is proposed to increase its autonomy and 
adaptability through an on-line incremental clustering as 

I ‘ 4  s ’  
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Fig. 2 Architectme of the navigation system 
A. Clustering: Finding Situations 
As mentioned in the previous section, antecedents of the 
FBRS describe situations the robot encounters. These 
situations are in turn defmed by the sensory signals. In order 
to collect sonar signals corresponding to different situations, 
experiments have been performed by placing the robot into 
simulated environments containing commonly encountered 
situations, cf. Figure 3. 

Fig. 3 Room setup and robot mjectories used for dab collection 

Acquired data has been used to obtain a partition of the 
8-dimensional sonar space to the space of fuzzy situations, 
e.g. “open space”, “right corner”, etc. Although the situations 
can be labelled and interpreted this way, these labels only 
serve to gain insight into tbe results of clustering and are not 
relevant for the robot and its navigation system. Clustering bas 
been performed using fuzzy c-means clustering algorithm 
briefly discussed in Section 11. 
In practical applications, there are several parameters of the 
clustering algorithm to be chosen for (1) that have a profound 
impact on quality of resulting partition, namely partition order 
m, and number of clusters c. There are several cluster validity 
measures [6], [9], 1121, [I31 that can be used to evaluate 
quality of the partition and to aid the process of selecting 
particular values of m and c. 
Bezdek [2] defined partition coefficient Vpc 

254 
(2) v,(u) - k=l i=l 

n 
and partition entropy VpE 

Vpc takes its maximum (and V, takes its minimum) on every 
hard c-partition for which u j k ( x ) ~ { O , l )  and Vpc takes its 
minimum (and VpE takes its maximum) on the fuzziest 
possible partition for whichu,(x)= 11.. Therefore, to achieve 
good inter-cluster separation, Vpc should be maximized while 
Vp8 should be minimized. 
Non-fuzzy index [I31 is defmed as 

This index provides another measure of how fuzzy a 
c-partition is: it takes its maximum value for crisp partitions 
and its lowest value in the case of fuzziest clustering. 
Analogously to VPC , NFI should be maximized. 
Minimum and Mean Hard Tendency [ 121 

MinHT=max{-loglo(T,)} IS s S c , ( 5 )  

(6) 
I C  MeanHT=-c-log(T,), 
c *=I 

with hard tendency T, + 0 defmed as 

cs 
r. =!!& (7) r,- .%ex, . 

card(X,) ’ ‘ uji ’ 
where card(X,) is cardinality of the input data set, and 

u..=max{u,j} and u,=max{u.,}; I < t < c  (8) 

are the first and second maxima of the elements of U; which 
determine the membership of the element xi in all clusters. 
Therefore, MinHT extracts the least favourable hard tendency 
of the set of clusters while MeanHT determines the average of 
the bard tendencies of all clusters. 
All hctionals (1-6) have been examined to determine the 
optimal values of the clustering parameters. The result of 
clustering process with the determined values of m=1.2 and 
c=8 is depicted in Figure 4 in form of polar plots of sonar 
signals corresponding to the determined cluster prototypes. 
B. The Rule Base 
For the purpose of the robot navigation problem, the fuzzy 
inputs are derived from the sensory information of the robot’s 
fiont eight sonars (cf. Figure 1). The fuzzified input provides 
an indication of the robot’s position relative to the walls and 
obstacles in the environment. The defuzzified output should 
give constructive directions for the robot to effectively stay 
clear from collisions while moving at a constant velocity. The 
number of input fuzzy sets and the output fuzzy sets should be 
minimized to reduce complexity of the search space for fuzzy 
rule base learning. In order to minimize the input state space, 
input generalization is performed using fuzzy clustering as 
described in the previous section. A single input variable, 
labelled situation, is used to represent the situational 

J‘ , r , j  
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environment of the robot. Its fuzzy sets' membership 
functions are derived from the results of fuzzy c-means 
clustering used to transform the robot's eight sonar readings 
into clusters that make clear defmitions of the robot's 
situations. Through inspection of the eight cluster centers that 
were derived, their cluster centers were extracted and the 
situations are qualitatively described as front obstacle, right 
comer, right obsfacle, open space, narrow corridor, left 
obstacle, left corner, and wide corridor (corresponding, 
respectively, to sonar configurations a-h in Figure 4). 

Pig. 4 Cluster prototypes of fuuy sihlatioos 

Likewise, there is one output state variable that dictates the 
relative heading the robot should rotate by. The linguistic 
label for this output is turn amount. The fuzzy set labels and 
their respective headings for furn amount are: complefe left 
(903, very left (60"). left (30°), sfraight (O'), right (-30°), very 
right (-60°), complefe right (-90"). The surface structure of a 
fuzzy linguistic rule showing the relationship between the 
input and output linguistic variables takes the following form 

Rule 1: IF situation isfiont wall 

The database pf a fuzzy system defmes the membership 
functions of the input and output fuzzy sets for fuzzification 
and defuzzification. Since only the cluster centres of the input 
fuvy  sets are known, the degrees of membership for 
fuvification is determined using the distance between the 
actual sonar values and centre of each fuzzy cluster. This is 
accomplished using the same expression figuring in the 
objective function of fuzzy c-means clustering algorithm (1). 

THEN turn amount is complete right 

where U,, is the degree of membership of the current data 
point k to cluster I, c is the number of clusters, and D,u is the 
distance of the data point k to cluster I measured using 
Euclidian distance A. 
The next step in the fuzzy inference model [6] is rule 
evaluation. Since there is only one input variable, there is 
always one antecedent in each rule. Thus, the rule strength, or 

the numerical mini" value of the antecedents in a rule, is 
strictly the membership value of the current situation to the 
rule's single antecedent. Consequently, the numerical strength 
for each output fuzzy variable is the maximum value for that 
consequent derived among all the rules in the rule base after 
rule evaluation. 
Finally, defuzzification is performed to convert the output 
variable strengths into crisp system outputs. Singleton 
membership functions are used to defme each fuming amount 
output fuzzy set. The value of each singleton is equal to the 
turning amount in degrees that the output variable refers to. 
The crisp output is determined via the commonly used Center 
of Gravity Algorithm for defuzzification (COG). COG 
defuzzification is determined by formula 

k ( w k  ' . k )  

(10) y =  k=l 

f , ( w k )  ' 
k=l 

where y is the crisp output, wk is the weight of the fuzzy rule 
k, xk is the position of the singleton k in output domain, and n 
is the number of output fuzzy sets. 

C. Reinforcement Leaming 
Initially, the rule base of the fuzzy system is not known. 
Reinforcement learning is used to discover the rule base 
sufficient for obstacle avoidance. The problem d e f ~ t i o n  of 
reinforcement learning is to determine the optimal policy or 
mapping between situations and actions (or antecedents and 
consequents) in order to maximize rewards over time and 
thus, in this case, maintain repeatable obstacle avoiding 
performance. 
The main challenge that arises in applying reinforcement 
learning to robot navigation is assigning appropriate 
immediate and delayed credit to actions. Reinforcement, 
induced by the robot's immediate and/or past actions, is very 
particular to locality. Therefore, optimal long term actions are 
dificult to learn. Q-leaming, an off policy [lo] control in 
combination with a temporal difference (TD) algorithm is 
used to address this challenge and eventually fmd the optimal 
policy. A Q-value can be defined as a prediction of the sum of 
the reinforcements the agent will receive when performing the 
associated action and following given policy [ 11. A Q-value is 
assigned for each situation-action pair in the problem space. 
Initially, these are randomly assigned. In this case, the 
dimension of the lookup table holding the Q-value predictions 
corresponds to the number of clusters by the number of 
turning options, respectively. Thus, each situation-action pair 
bas a Q-value or a utility associated with it. AAer several 
iterations, the knowledge gained from updating the Q-values 
is propagated backwards through a lookup table from later 
states to earlier states in time until it eventually predict the 
optimal Q-value function. 
Each situation-action pair in the lookup table can be regarded 
as a possible rule in the fuzzy rule base. A rule base is formed 
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6om all possible rules in the fuzzy knowledge base. The 
number of rules in the rule base at any time is equal to the 
number of clusters and each rule in the rule base provides an 
action for each situation. Initially, a rule is added for each 
situation and the action associated with that situation is chosen 
randomly. 
With each iteration, the robot assesses its situation and 
fuzzifies the values of its sonar readings. Through rule 
evaluation, it determines the strength si of each rule i. 
Defuzzification of the rule consequents then produces the fmal 
(crisp) change of headmg direction for the robot to perform. 
Therefore, instead of identifying discrete single situations and 
performing discrete single actions as in traditional 
reinforcement learning, fuzzified combinations of situations 
and actions are considered. AAer the action is taken, the next 
state is observed and the Q-values in the lookup table are 
updated. Only the rules which were activated in the rule 
evaluation step are updated in the lookup table according to 

(11) 
Q(sr ,a , )  = Q(s, ,a , )  

+&s, ,o,bmax(Q(s,+,.4 - QCs, .a, )I 
where Q(s,,a,) is the utility value of situation s and action a 
at time t, and r(s.0) is the reinforcement received after 
performing the action a in situation s. The effect of the 
learning rate a and the discount factor yon learning is further 
discussed in [IO]. 

Reinforcement is given in terms of reward or penalty. A 
reward of +I is achieved when the robot has maintained the 
desirable performance of not hitting an obstacle. Alternatively, 
a penalty of -1 is received when the robot hits an obstacle. The 
maximum utility possible observed in the next state, 
max(Q(~,+~,a)) can be represented as 

max(Q(s,+l,a) = x u j k , , ,  m a x ( Q ( i d ,  (12) 
j = l  

where max(Q(i,a)) is the maximum utility in the lookup table 
possible for cluster or situationj. Since the next state is not a 
single discrete state, max(Q(s,+,a,+I)) is calculated as the 
weighted average of the membership degrees to each situation 
and the maximum utility in the lookup table for that situation. 
Likewise, since each rule in the rule base is responsible only 
for a portion of the crisp output heading, the reinforcement 
and the contribution of max(Q(s,+l,u,+l)) should be 
proportional with respect to the rule strength, si, of the 
corresponding situation-action pair. This leads to 
reformulation of the update rule to 

(13) 
Q(s,,a,h =Q(s +&-+, .a,Hwm m=(Q(s,+,, 0) - Qb,, .,Ii] 

where wja is the strength of rule i that corresponds to the 
situation-action pair. The values in the lookup table encode 

the estimation policy that dictates the optimal situation-action 
pairs. Obviously, the estimation policy favours maximum 
Q-values. Thus learning ends not when the Q-value ceases to 
change, but when the estimation policy, or maximum Q- 
values for each situation, ceases to change. 
In order for Q-learning to converge to the optimal policy the 
robot must visit every situation and execute each possible 
action in the situation several times. Therefore, a behaviour 
policy must be chosen that will ensure a sufficient exploration 
of the search space. S o h  policy [3] bas been chosen, 
which assigns a probability to each action proportional to the 
situation-action utility value in the lookup table. It is the 
probability that the rule will be added to the fuzzy rule base: 
the higher utility value the action has in that situation, the 
more likely it will be chosen. The s o h  policy overcomes 
the drawbacks of the &-greedy and E-SOA policies [IO], that 
both select random actions uniformly, by still selecting action 
stochastically but with favouritism of high utility situation- 
action pairs. In addition, sof?max provides a simple 
compromise between exploration and exploitation of the 
reinforcement learning problem. 

Iv. RESULTS 

Convergence is achieved when the estimation policy ceases to 
change. The Q-values may modulate, however the relative 
Q-values among the actions for each situation remain 
constant. After convergence, the robot agent was indeed able 
to learn the rule base sufficient to solve the obstacle avoidance 
problem. 

0 50 1W 150 200 250 Cillision 

Figure 5 Number of iterations between collisions during the leaming process 

The graph in Figure 5 illustrates how learning progressed with 
iterations. It is evident that as the number of iterations 
increases, the robot's performance appears to degrade at 
certain points. This demonstrates the exploration aspect of 
reinforcement learning which continues to experiment with 
different actions in search for a better performance. The main 
characteristic to notice is the increasing number of iterations 
between collisions indicated by the dashed trend line. 
The Q-values in the lookup table are essentially predictions of 
the cumulative sum of reinforcements the agent will receive 
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by performing the action in the current situation and following 
the policy thereafter [I]. Therefore, the lookup table should 
converge such that the most desired actions will have greater 
positive Q-values (utility values). Consequently, actions with 
greater utility values have a greater probability of being added 
to the fuzzy rule base. Table I shows the complete rule base 
derived fiom the lookup table in this manner. The agent was 
able to solve the fuzzy rule base autonomously. 

TABLE I 
LEANED FUZZY RULE BASE FOR OBSTACLE AVOIDANCE 

Figure 6 shows a simulated trajectory of the fuzzy controlled 
robot aAer learning the fuzzy rule base in Table 1. It is 
evident that the robot's path is such that it avoids collisions 
with any of the polygons present in the environment. 

,. 

'" \ 

Figure 6. Sample aajectory ofrobot using the lcamed fuzy rules 

V. CONCLUSION 

In this paper, a new approach for robot navigation has been 
presented combining favourable properties of several existing 
technologies: fuzzy clustering for classification of situations 
in robot's environment, fuzzy rule based systems for infemng 
actions suitable in different situations, and reinforcement 
learning to set up the rules of inference in autonomous 
manner. 
To further increase the degree of autonomy of such navigation 
system, the current off-line clustering of situations could be 

replaced by an on-lme incremental clustering system that 
would create models of new situations as they arise during the 
robot's interaction with the world. 
The results presented in this paper demonstrate the success of 
the new approach in solving the problem of obstacle 
avoidance. The same methodology could be adapted for other 
types of behaviours taking part in robot navigation, such as 
wall following, goal seeking, or foraging. 
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